Abstract
This paper investigates the stability of diode rectifier based HVDC (DR-HVDC) connected offshore wind farms. The impedance model of the DR-HVDC connected offshore wind farms in dq frame is analytically developed and is validated by comparing its impedances to those obtained from frequency scanning of time domain EMT model in PSCAD/EMTDC. Based on the impedance model, the impacts of the sizes of DR-HVDC DC smoothing reactors and AC filters on offshore system stability are analyzed. It shows reduced DC smoothing reactance degrades the d-axis stability margin and can potentially lead to system instability. Higher bandwidth of offshore AC voltage control of wind turbine line side converter is proposed to minimize such instability potential. The analysis also shows that reduced AC filters size helps to increase q-axis stability margin and leads to a more stable system. Moreover, stability analysis considering the interaction between WTs is conducted and it reveals that the WT P-V control has a significant impact on the stability of the DR-HVDC connected WTs.
Original language | English |
---|---|
Number of pages | 11 |
Journal | IEEE Transactions on Power Delivery |
DOIs | |
Publication status | Published - 12 Mar 2021 |
Keywords
- diode rectifier based HVDC
- grid forming wind turbine control
- impedance modelling
- interaction between offshore wind farms and HVDC
- stability analysis