Projects per year
Abstract
Polynomial matrix eigenvalue decomposition (PEVD) algorithms have been shown to enable a solution to the broadband angle of arrival (AoA) estimation problem. A parahermitian cross-spectral density (CSD) matrix can be generated from samples gathered by multiple array elements. The application of the PEVD to this CSD matrix leads to a paraunitary matrix which can be used within the spatio-spectral polynomial multiple signal classification (SSP-MUSIC) AoA estimation algorithm. Here, we demonstrate that the recent low-complexity divide-and-conquer sequential matrix diagonalisation (DC-SMD) algorithm, when paired with SSP-MUSIC, is able to provide superior AoA estimation versus traditional PEVD methods for the same algorithm execution time. We also provide results that quantify the performance trade-offs that DC-SMD offers for various algorithm parameters, and show that algorithm convergence speed can be increased at the expense of increased decomposition error and poorer AoA estimation performance.
Original language | English |
---|---|
Number of pages | 5 |
Publication status | Accepted/In press - 6 Sept 2017 |
Event | IEEE Sensor Signal Processing in Defence Conference - London, London, United Kingdom Duration: 6 Dec 2017 → 7 Dec 2017 http://www.sspdconference.org |
Conference
Conference | IEEE Sensor Signal Processing in Defence Conference |
---|---|
Abbreviated title | SSPD'17 |
Country/Territory | United Kingdom |
City | London |
Period | 6/12/17 → 7/12/17 |
Internet address |
Keywords
- broadband
- narrowband
- angle of arrival
Fingerprint
Dive into the research topics of 'Impact of fast-converging PEVD algorithms on broadband AoA estimation'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Signal Processing Solutions for the Networked Battlespace
EPSRC (Engineering and Physical Sciences Research Council)
1/04/13 → 31/03/18
Project: Research