Identification of new orbits to enable future mission oppportunities for the human exploration of the Martian moon Phobos

Mattia Zamaro, James D. Biggs

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

One of the paramount stepping stones towards NASA's long-term goal of undertaking human missions to Mars is the exploration of the Martian moons. Since a precursor mission to Phobos would be easier than landing on Mars itself, NASA is targeting this moon for future exploration, and ESA has also announced Phootprint as a candidate Phobos sample-and-return mission. Orbital dynamics around small planetary satellites are particularly complex because many strong perturbations are involved, and the classical circular restricted three-body problem (R3BP) does not provide an accurate approximation to describe the system's dynamics. Phobos is a special case, since the combination of a small mass-ratio and length-scale means that the sphere-of-influence of the moon moves very close to its surface. Thus, an accurate nonlinear model of a spacecraft's motion in the vicinity of this moon must consider the additional perturbations due to the orbital eccentricity and the complete gravity field of Phobos, which is far from a spherical-shaped body, and it is incorporated into an elliptic R3BP using the gravity harmonics series-expansion (ER3BPGH). In this paper, a showcase of various classes of non-keplerian orbits are identified and a number of potential mission applications in the Mars-Phobos system are proposed: these results could be exploited in upcoming unmanned missions targeting the exploration of this Martian moon. These applications include: low-thrust hovering and orbits around Phobos for close-range observations; the dynamical substitutes of periodic and quasi-periodic Libration Point Orbits in the ER3BP-GH to enable unique low-cost operations for space missions in the proximity of Phobos; their manifold structure for high-performance landing / take-off maneuvers to and from Phobos' surface and for transfers from and to Martian orbits; Quasi-Satellite Orbits for long-period station-keeping and maintenance. In particular, these orbits could exploit Phobos' occulting bulk and shadowing wake as a passive radiation shield during future manned flights to Mars to reduce human exposure to radiation, and the latter orbits can be used as an orbital garage, requiring no orbital maintenance, where a spacecraft could make planned pit-stops during a round-trip mission to Mars.
LanguageEnglish
Pages160-182
Number of pages23
JournalActa Astronautica
Volume119
Early online date1 Dec 2015
DOIs
Publication statusPublished - Feb 2016
Event65th International Astronautical Congress (IAC 2014) - Metro Toronto Convention Centre, Toronto, Canada
Duration: 29 Sep 20143 Oct 2014

Fingerprint

Phobos
Moon
natural satellites
Mars
Orbits
orbits
mars
targeting
spacecraft
planetary satellite
perturbation
Landing
orbitals
NASA
landing
Spacecraft
Gravitation
gravity field
Satellites
maintenance

Keywords

  • Phobos
  • Mars manned mission
  • libration point orbits
  • quasi-satellite orbits
  • artificial equilibrium points
  • radiation shielding

Cite this

@article{852fd8cd4ddc48a98c4c4f719bf8fa66,
title = "Identification of new orbits to enable future mission oppportunities for the human exploration of the Martian moon Phobos",
abstract = "One of the paramount stepping stones towards NASA's long-term goal of undertaking human missions to Mars is the exploration of the Martian moons. Since a precursor mission to Phobos would be easier than landing on Mars itself, NASA is targeting this moon for future exploration, and ESA has also announced Phootprint as a candidate Phobos sample-and-return mission. Orbital dynamics around small planetary satellites are particularly complex because many strong perturbations are involved, and the classical circular restricted three-body problem (R3BP) does not provide an accurate approximation to describe the system's dynamics. Phobos is a special case, since the combination of a small mass-ratio and length-scale means that the sphere-of-influence of the moon moves very close to its surface. Thus, an accurate nonlinear model of a spacecraft's motion in the vicinity of this moon must consider the additional perturbations due to the orbital eccentricity and the complete gravity field of Phobos, which is far from a spherical-shaped body, and it is incorporated into an elliptic R3BP using the gravity harmonics series-expansion (ER3BPGH). In this paper, a showcase of various classes of non-keplerian orbits are identified and a number of potential mission applications in the Mars-Phobos system are proposed: these results could be exploited in upcoming unmanned missions targeting the exploration of this Martian moon. These applications include: low-thrust hovering and orbits around Phobos for close-range observations; the dynamical substitutes of periodic and quasi-periodic Libration Point Orbits in the ER3BP-GH to enable unique low-cost operations for space missions in the proximity of Phobos; their manifold structure for high-performance landing / take-off maneuvers to and from Phobos' surface and for transfers from and to Martian orbits; Quasi-Satellite Orbits for long-period station-keeping and maintenance. In particular, these orbits could exploit Phobos' occulting bulk and shadowing wake as a passive radiation shield during future manned flights to Mars to reduce human exposure to radiation, and the latter orbits can be used as an orbital garage, requiring no orbital maintenance, where a spacecraft could make planned pit-stops during a round-trip mission to Mars.",
keywords = "Phobos, Mars manned mission, libration point orbits, quasi-satellite orbits, artificial equilibrium points, radiation shielding",
author = "Mattia Zamaro and Biggs, {James D.}",
year = "2016",
month = "2",
doi = "10.1016/j.actaastro.2015.11.007",
language = "English",
volume = "119",
pages = "160--182",
journal = "Acta Astronautica",
issn = "0094-5765",

}

Identification of new orbits to enable future mission oppportunities for the human exploration of the Martian moon Phobos. / Zamaro, Mattia; Biggs, James D.

In: Acta Astronautica, Vol. 119, 02.2016, p. 160-182.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Identification of new orbits to enable future mission oppportunities for the human exploration of the Martian moon Phobos

AU - Zamaro, Mattia

AU - Biggs, James D.

PY - 2016/2

Y1 - 2016/2

N2 - One of the paramount stepping stones towards NASA's long-term goal of undertaking human missions to Mars is the exploration of the Martian moons. Since a precursor mission to Phobos would be easier than landing on Mars itself, NASA is targeting this moon for future exploration, and ESA has also announced Phootprint as a candidate Phobos sample-and-return mission. Orbital dynamics around small planetary satellites are particularly complex because many strong perturbations are involved, and the classical circular restricted three-body problem (R3BP) does not provide an accurate approximation to describe the system's dynamics. Phobos is a special case, since the combination of a small mass-ratio and length-scale means that the sphere-of-influence of the moon moves very close to its surface. Thus, an accurate nonlinear model of a spacecraft's motion in the vicinity of this moon must consider the additional perturbations due to the orbital eccentricity and the complete gravity field of Phobos, which is far from a spherical-shaped body, and it is incorporated into an elliptic R3BP using the gravity harmonics series-expansion (ER3BPGH). In this paper, a showcase of various classes of non-keplerian orbits are identified and a number of potential mission applications in the Mars-Phobos system are proposed: these results could be exploited in upcoming unmanned missions targeting the exploration of this Martian moon. These applications include: low-thrust hovering and orbits around Phobos for close-range observations; the dynamical substitutes of periodic and quasi-periodic Libration Point Orbits in the ER3BP-GH to enable unique low-cost operations for space missions in the proximity of Phobos; their manifold structure for high-performance landing / take-off maneuvers to and from Phobos' surface and for transfers from and to Martian orbits; Quasi-Satellite Orbits for long-period station-keeping and maintenance. In particular, these orbits could exploit Phobos' occulting bulk and shadowing wake as a passive radiation shield during future manned flights to Mars to reduce human exposure to radiation, and the latter orbits can be used as an orbital garage, requiring no orbital maintenance, where a spacecraft could make planned pit-stops during a round-trip mission to Mars.

AB - One of the paramount stepping stones towards NASA's long-term goal of undertaking human missions to Mars is the exploration of the Martian moons. Since a precursor mission to Phobos would be easier than landing on Mars itself, NASA is targeting this moon for future exploration, and ESA has also announced Phootprint as a candidate Phobos sample-and-return mission. Orbital dynamics around small planetary satellites are particularly complex because many strong perturbations are involved, and the classical circular restricted three-body problem (R3BP) does not provide an accurate approximation to describe the system's dynamics. Phobos is a special case, since the combination of a small mass-ratio and length-scale means that the sphere-of-influence of the moon moves very close to its surface. Thus, an accurate nonlinear model of a spacecraft's motion in the vicinity of this moon must consider the additional perturbations due to the orbital eccentricity and the complete gravity field of Phobos, which is far from a spherical-shaped body, and it is incorporated into an elliptic R3BP using the gravity harmonics series-expansion (ER3BPGH). In this paper, a showcase of various classes of non-keplerian orbits are identified and a number of potential mission applications in the Mars-Phobos system are proposed: these results could be exploited in upcoming unmanned missions targeting the exploration of this Martian moon. These applications include: low-thrust hovering and orbits around Phobos for close-range observations; the dynamical substitutes of periodic and quasi-periodic Libration Point Orbits in the ER3BP-GH to enable unique low-cost operations for space missions in the proximity of Phobos; their manifold structure for high-performance landing / take-off maneuvers to and from Phobos' surface and for transfers from and to Martian orbits; Quasi-Satellite Orbits for long-period station-keeping and maintenance. In particular, these orbits could exploit Phobos' occulting bulk and shadowing wake as a passive radiation shield during future manned flights to Mars to reduce human exposure to radiation, and the latter orbits can be used as an orbital garage, requiring no orbital maintenance, where a spacecraft could make planned pit-stops during a round-trip mission to Mars.

KW - Phobos

KW - Mars manned mission

KW - libration point orbits

KW - quasi-satellite orbits

KW - artificial equilibrium points

KW - radiation shielding

UR - http://www.sciencedirect.com/science/journal/00945765

U2 - 10.1016/j.actaastro.2015.11.007

DO - 10.1016/j.actaastro.2015.11.007

M3 - Article

VL - 119

SP - 160

EP - 182

JO - Acta Astronautica

T2 - Acta Astronautica

JF - Acta Astronautica

SN - 0094-5765

ER -