Abstract
Two novel high-specific surface area polymeric sorbents (HXLPP-SAXa and HXLPP-SAXb) were synthesised and evaluated as solid-phase extraction sorbents. The novel sorbents under study are based on hypercrosslinked polymer microspheres and designed specifically to offer ion-exchange properties; the specific polymers of interest in the current work have been
chemically modified in such a way as to impart a tuneable level of strong anion-exchange character onto the sorbents. The novel sorbents were applied as strong anion-exchange sorbents in solid-phase extraction studies, with the goal being to selectively extract a group of acidic compounds from complex environmental samples in an efficient manner. Out of two HXLPP-SAX resins evaluated in this study, it was found that the sorbent with the lower ionexchange capacity (HXLPP-SAXa) gave rise to the best overall performance characteristics and, indeed, was found to compare favourably to the solid-phase extraction performance of
commercial strong anion-exchange sorbents. When the HXLPP-SAXa sorbent was applied to the solid-phase extraction of environmental water samples, the result showed quantitative and selective extraction of low levels of acidic pharmaceuticals from 500 mL of river water and 100 mL of effluent wastewater.
chemically modified in such a way as to impart a tuneable level of strong anion-exchange character onto the sorbents. The novel sorbents were applied as strong anion-exchange sorbents in solid-phase extraction studies, with the goal being to selectively extract a group of acidic compounds from complex environmental samples in an efficient manner. Out of two HXLPP-SAX resins evaluated in this study, it was found that the sorbent with the lower ionexchange capacity (HXLPP-SAXa) gave rise to the best overall performance characteristics and, indeed, was found to compare favourably to the solid-phase extraction performance of
commercial strong anion-exchange sorbents. When the HXLPP-SAXa sorbent was applied to the solid-phase extraction of environmental water samples, the result showed quantitative and selective extraction of low levels of acidic pharmaceuticals from 500 mL of river water and 100 mL of effluent wastewater.
Original language | English |
---|---|
Pages (from-to) | 2621-2628 |
Number of pages | 8 |
Journal | Journal of Separation Science |
Volume | 35 |
DOIs | |
Publication status | Published - 2012 |
Keywords
- anion-exchange resin
- environmental water
- polymers