Abstract
Replacement of conventional organic cations by thermally stable inorganic cations in perovskite solar cells (PSCs) is one of the promising approaches to make thermally stable photovoltaics. However, conventional spin-coating and solvent-engineering processes in a controlled inert atmosphere hamper the upscaling. In this study, we demonstrated a dynamic hot-air (DHA) casting process to control the morphology and stability of all-inorganic PSCs which is processed under ambient conditions and free from conventional harmful antisolvents. Furthermore, CsPbI2Br perovskite was doped with barium (Ba2+) alkaline earth metal cations (BaI2:CsPbI2Br). This DHA method facilitates the formation of uniform grain and controlled crystallization that makes stable all-inorganic PSCs which enables an intact black α-phase under ambient conditions. The DHA-processed BaI2:CsPbI2Br perovskite photovoltaics shows the champion power conversion efficiency (PCE) of 14.85% (reverse scan) for a small exposure area of 0.09 cm2 and 13.78% for a large area of 1 × 1 cm2 with excellent reproducibility. Interestingly, the hot-air-processed devices retain >92% of the initial efficiency after 300 h. This DHA method facilitates a wide processing window for upscaling the all-inorganic perovskite photovoltaics.
Original language | English |
---|---|
Pages (from-to) | 6213-6220 |
Number of pages | 8 |
Journal | Nano Letters |
Volume | 19 |
Issue number | 9 |
Early online date | 1 Aug 2019 |
DOIs | |
Publication status | Published - 11 Sept 2019 |
Keywords
- all-inorganic perovskites
- barium incorporation
- CsPbIBr perovskites
- hot-air method
- stability