Highly efficient IR to NIR upconversion in Gd2O2S:Er3+ for photovoltaic applications

Rosa Martín-Rodríguez, Stefan Fischer, Aruna Ivaturi, Benjamin Froehlich, Karl W. Krämer, Jan C. Goldschmidt, Bryce S. Richards, Andries Meijerink

Research output: Contribution to journalArticlepeer-review

180 Citations (Scopus)


Upconversion (UC) is a promising option to enhance the efficiency of solar cells by conversion of sub-bandgap infrared photons to higher energy photons that can be utilized by the solar cell. The UC quantum yield is a key parameter for a successful application. Here the UC luminescence properties of Er 3+-doped Gd2O2S are investigated by means of luminescence spectroscopy, quantum yield measurements, and excited state dynamics experiments. Excitation into the maximum of the 4I 15/24I13/2 Er3+ absorption band around 1500 nm induces very efficient UC emission from different Er 3+ excited states with energies above the silicon bandgap, in particular, the emission originating from the 4I11/2 state around 1000 nm. Concentration dependent studies reveal that the highest UC quantum yield is realized for a 10% Er3+-doping concentration. The UC luminescence is compared to the well-known Er3+-doped β-NaYF4 UC material for which the highest UC quantum yield has been reported for 25% Er3+. The UC internal quantum yields were measured in this work for Gd2O2S: 10%Er3+ and β-NaYF4: 25%Er3+ to be 12 ± 1% and 8.9 ± 0.7%, respectively, under monochromatic excitation around 1500 nm at a power of 700 W/m2. The UC quantum yield reported here for Gd 2O2S: 10%Er3+ is the highest value achieved so far under monochromatic excitation into the 4I13/2 Er 3+ level. Power dependence and lifetime measurements were performed to understand the mechanisms responsible for the efficient UC luminescence. We show that the main process yielding 4I11/2 UC emission is energy transfer UC.

Original languageEnglish
Pages (from-to)1912-1921
Number of pages10
JournalChemistry of Materials
Issue number9
Publication statusPublished - 5 Apr 2013


  • luminescence
  • quantum yield
  • solar cells
  • upconversion


Dive into the research topics of 'Highly efficient IR to NIR upconversion in Gd2O2S:Er3+ for photovoltaic applications'. Together they form a unique fingerprint.

Cite this