Abstract
Visualising fluids and particles within channels is a key element of microfluidic work. Current imaging methods for particle image velocimetry often require expensive high-speed cameras with powerful illuminating sources, thus potentially limiting accessibility. This study explores for the first time the potential of an event-based camera for particle and fluid behaviour characterisation in a microfluidic system. Event-based cameras have the unique capacity to detect light intensity changes asynchronously and to record spatial and temporal information with low latency, low power and high dynamic range. Event-based cameras could consequently be relevant for detecting light intensity changes due to moving particles, chemical reactions or intake of fluorescent dyes by cells to mention a few. As a proof-of-principle, event-based sensing was tested in this work to detect 1 μm and 10 μm diameter particles flowing in a microfluidic channel for average fluid velocities of up to 1.54 m s−1. Importantly, experiments were performed by directly connecting the camera to a standard fluorescence microscope, only relying on the microscope arc lamp for illumination. We present a data processing strategy that allows particle detection and tracking in both bright-field and fluorescence imaging. Detection was achieved up to a fluid velocity of 1.54 m s−1 and tracking up to 0.4 m s−1 suggesting that event-based cameras could be a new paradigm shift in microscopic imaging.
Original language | English |
---|---|
Pages (from-to) | 3024-3035 |
Number of pages | 12 |
Journal | Lab on a Chip |
Volume | 20 |
Issue number | 16 |
Early online date | 17 Jul 2020 |
DOIs | |
Publication status | Published - 21 Aug 2020 |
Keywords
- microfluidic devices
- particle image velocimetry
- event-based camera