High precision detection of change in intermediate range order of amorphous zirconia-doped tantala thin films due to annealing

K. Prasai, J. Jiang, A. Mishkin, B. Shyam, S. Angelova, R. Birney, D. A. Drabold, M. Fazio, E. K. Gustafson, G. Harry, S. Hoback, J. Hough, C. Lévesque, I. MacLaren, A. Markosyan, I. W. Martin, C. S. Menoni, P. G. Murray, S. Penn, S. Reid & 10 others R. Robie, S. Rowan, F. Schiettekatte, R. Shink, A. Turner, G. Vajente, H-P. Cheng, M. M. Fejer, A. Mehta, R. Bassiri

Research output: Contribution to journalArticle

Abstract

Understanding the local atomic order in amorphous thin film coatings and how it relates to macroscopic performance factors, such as mechanical loss, provides an important path towards enabling the accelerated discovery and development of improved coatings. High precision x-ray scattering measurements of thin films of amorphous zirconia-doped tantala (ZrO2−Ta2O5) show systematic changes in intermediate range order (IRO) as a function of postdeposition heat treatment (annealing). Atomic modeling captures and explains these changes, and shows that the material has building blocks of metal-centered polyhedra and the effect of annealing is to alter the connections between the polyhedra. The observed changes in IRO are associated with a shift in the ratio of corner-sharing to edge-sharing polyhedra. These changes correlate with changes in mechanical loss upon annealing, and suggest that the mechanical loss can be reduced by developing a material with a designed ratio of corner-sharing to edge-sharing polyhedra.
LanguageEnglish
Article number045501
Number of pages6
JournalPhysical Review Letters
Volume123
Issue number4
Early online date23 Jul 2019
DOIs
Publication statusE-pub ahead of print - 23 Jul 2019

Fingerprint

polyhedrons
zirconium oxides
Zirconia
Annealing
Thin films
annealing
thin films
Coatings
Amorphous films
coatings
x ray scattering
Heat treatment
Scattering
X rays
heat treatment
Metals
shift
metals

Keywords

  • gravitational waves
  • amorphous materials
  • glasses
  • thin films
  • molecular dynamics
  • X-ray scattering

Cite this

Prasai, K. ; Jiang, J. ; Mishkin, A. ; Shyam, B. ; Angelova, S. ; Birney, R. ; Drabold, D. A. ; Fazio, M. ; Gustafson, E. K. ; Harry, G. ; Hoback, S. ; Hough, J. ; Lévesque, C. ; MacLaren, I. ; Markosyan, A. ; Martin, I. W. ; Menoni, C. S. ; Murray, P. G. ; Penn, S. ; Reid, S. ; Robie, R. ; Rowan, S. ; Schiettekatte, F. ; Shink, R. ; Turner, A. ; Vajente, G. ; Cheng, H-P. ; Fejer, M. M. ; Mehta, A. ; Bassiri, R. / High precision detection of change in intermediate range order of amorphous zirconia-doped tantala thin films due to annealing. In: Physical Review Letters. 2019 ; Vol. 123, No. 4.
@article{c35173bfa5b4493b9e82e42e6af77d76,
title = "High precision detection of change in intermediate range order of amorphous zirconia-doped tantala thin films due to annealing",
abstract = "Understanding the local atomic order in amorphous thin film coatings and how it relates to macroscopic performance factors, such as mechanical loss, provides an important path towards enabling the accelerated discovery and development of improved coatings. High precision x-ray scattering measurements of thin films of amorphous zirconia-doped tantala (ZrO2−Ta2O5) show systematic changes in intermediate range order (IRO) as a function of postdeposition heat treatment (annealing). Atomic modeling captures and explains these changes, and shows that the material has building blocks of metal-centered polyhedra and the effect of annealing is to alter the connections between the polyhedra. The observed changes in IRO are associated with a shift in the ratio of corner-sharing to edge-sharing polyhedra. These changes correlate with changes in mechanical loss upon annealing, and suggest that the mechanical loss can be reduced by developing a material with a designed ratio of corner-sharing to edge-sharing polyhedra.",
keywords = "gravitational waves, amorphous materials, glasses, thin films, molecular dynamics, X-ray scattering",
author = "K. Prasai and J. Jiang and A. Mishkin and B. Shyam and S. Angelova and R. Birney and Drabold, {D. A.} and M. Fazio and Gustafson, {E. K.} and G. Harry and S. Hoback and J. Hough and C. L{\'e}vesque and I. MacLaren and A. Markosyan and Martin, {I. W.} and Menoni, {C. S.} and Murray, {P. G.} and S. Penn and S. Reid and R. Robie and S. Rowan and F. Schiettekatte and R. Shink and A. Turner and G. Vajente and H-P. Cheng and Fejer, {M. M.} and A. Mehta and R. Bassiri",
year = "2019",
month = "7",
day = "23",
doi = "10.1103/PhysRevLett.123.045501",
language = "English",
volume = "123",
journal = "Physical Review Letters",
issn = "0031-9007",
number = "4",

}

Prasai, K, Jiang, J, Mishkin, A, Shyam, B, Angelova, S, Birney, R, Drabold, DA, Fazio, M, Gustafson, EK, Harry, G, Hoback, S, Hough, J, Lévesque, C, MacLaren, I, Markosyan, A, Martin, IW, Menoni, CS, Murray, PG, Penn, S, Reid, S, Robie, R, Rowan, S, Schiettekatte, F, Shink, R, Turner, A, Vajente, G, Cheng, H-P, Fejer, MM, Mehta, A & Bassiri, R 2019, 'High precision detection of change in intermediate range order of amorphous zirconia-doped tantala thin films due to annealing' Physical Review Letters, vol. 123, no. 4, 045501. https://doi.org/10.1103/PhysRevLett.123.045501

High precision detection of change in intermediate range order of amorphous zirconia-doped tantala thin films due to annealing. / Prasai, K.; Jiang, J.; Mishkin, A.; Shyam, B.; Angelova, S.; Birney, R.; Drabold, D. A.; Fazio, M.; Gustafson, E. K.; Harry, G.; Hoback, S.; Hough, J.; Lévesque, C.; MacLaren, I.; Markosyan, A.; Martin, I. W.; Menoni, C. S.; Murray, P. G.; Penn, S.; Reid, S.; Robie, R.; Rowan, S.; Schiettekatte, F.; Shink, R.; Turner, A.; Vajente, G.; Cheng, H-P.; Fejer, M. M.; Mehta, A.; Bassiri, R.

In: Physical Review Letters, Vol. 123, No. 4, 045501, 23.07.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - High precision detection of change in intermediate range order of amorphous zirconia-doped tantala thin films due to annealing

AU - Prasai, K.

AU - Jiang, J.

AU - Mishkin, A.

AU - Shyam, B.

AU - Angelova, S.

AU - Birney, R.

AU - Drabold, D. A.

AU - Fazio, M.

AU - Gustafson, E. K.

AU - Harry, G.

AU - Hoback, S.

AU - Hough, J.

AU - Lévesque, C.

AU - MacLaren, I.

AU - Markosyan, A.

AU - Martin, I. W.

AU - Menoni, C. S.

AU - Murray, P. G.

AU - Penn, S.

AU - Reid, S.

AU - Robie, R.

AU - Rowan, S.

AU - Schiettekatte, F.

AU - Shink, R.

AU - Turner, A.

AU - Vajente, G.

AU - Cheng, H-P.

AU - Fejer, M. M.

AU - Mehta, A.

AU - Bassiri, R.

PY - 2019/7/23

Y1 - 2019/7/23

N2 - Understanding the local atomic order in amorphous thin film coatings and how it relates to macroscopic performance factors, such as mechanical loss, provides an important path towards enabling the accelerated discovery and development of improved coatings. High precision x-ray scattering measurements of thin films of amorphous zirconia-doped tantala (ZrO2−Ta2O5) show systematic changes in intermediate range order (IRO) as a function of postdeposition heat treatment (annealing). Atomic modeling captures and explains these changes, and shows that the material has building blocks of metal-centered polyhedra and the effect of annealing is to alter the connections between the polyhedra. The observed changes in IRO are associated with a shift in the ratio of corner-sharing to edge-sharing polyhedra. These changes correlate with changes in mechanical loss upon annealing, and suggest that the mechanical loss can be reduced by developing a material with a designed ratio of corner-sharing to edge-sharing polyhedra.

AB - Understanding the local atomic order in amorphous thin film coatings and how it relates to macroscopic performance factors, such as mechanical loss, provides an important path towards enabling the accelerated discovery and development of improved coatings. High precision x-ray scattering measurements of thin films of amorphous zirconia-doped tantala (ZrO2−Ta2O5) show systematic changes in intermediate range order (IRO) as a function of postdeposition heat treatment (annealing). Atomic modeling captures and explains these changes, and shows that the material has building blocks of metal-centered polyhedra and the effect of annealing is to alter the connections between the polyhedra. The observed changes in IRO are associated with a shift in the ratio of corner-sharing to edge-sharing polyhedra. These changes correlate with changes in mechanical loss upon annealing, and suggest that the mechanical loss can be reduced by developing a material with a designed ratio of corner-sharing to edge-sharing polyhedra.

KW - gravitational waves

KW - amorphous materials

KW - glasses

KW - thin films

KW - molecular dynamics

KW - X-ray scattering

UR - https://journals.aps.org/prl

U2 - 10.1103/PhysRevLett.123.045501

DO - 10.1103/PhysRevLett.123.045501

M3 - Article

VL - 123

JO - Physical Review Letters

T2 - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 4

M1 - 045501

ER -