High-intensity 405 nm light inactivation of Listeria monocytogenes

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

The antimicrobial properties of light is an area of increasing interest. This paper investigates the sensitivity of the significant foodborne pathogen Listeria monocytogenes to selected wavelengths of visible-light. Results demonstrate exposure to wavelengths region 400–450nm, at sufficiently high dose levels (750Jcm2), induced complete inactivation of a 5-log10 population. Exposure to wavelengths longer than 450nm did not cause significant inactivation. Analysis of 10nm bandwidths between 400 and 450nm confirmed 405(±5)nm light to be most effective for inactivation of L. monocytogenes, with a lesser bactericidal effect also evident at other wavelengths between 400 and 440nm. Identification of the optimum bactericidal wavelength enabled comparison of inactivation using 405(±5)nm filtered light and a 405nm LED array (14nm FWHM). Results demonstrate similar inactivation kinetics, indicating that the applied dose of 405-nm light is the important factor. Use of the 405nm LED array for inactivation of L. monocytogenes and other Listeria species resulted in similar kinetics, with up to 5-log10 reductions with a dose of 185Jcm2. Comparative data for the 405nm light inactivation of L. monocytogenes and other important foodborne pathogens, Escherichia coli, Salmonella enteritidis and Shigella sonnei, is also presented, with L. monocytogenes showing higher susceptibility to inactivation through 405nm light exposure.
LanguageEnglish
Pages1280–1286
Number of pages7
JournalPhotochemistry and Photobiology
Volume88
Issue number5
DOIs
Publication statusPublished - 2012

Fingerprint

Listeria
Listeria monocytogenes
deactivation
Light
Wavelength
Pathogens
wavelengths
pathogens
Dosimetry
Light emitting diodes
dosage
Shigella sonnei
light emitting diodes
Salmonella enteritidis
Salmonella
Kinetics
salmonella
Full width at half maximum
kinetics
Escherichia coli

Keywords

  • visible light
  • inactivation of microorganisms
  • 405-nm light
  • Listeria monocytogenes

Cite this

@article{7fbfb3080a0f43a1a8469124bde5337c,
title = "High-intensity 405 nm light inactivation of Listeria monocytogenes",
abstract = "The antimicrobial properties of light is an area of increasing interest. This paper investigates the sensitivity of the significant foodborne pathogen Listeria monocytogenes to selected wavelengths of visible-light. Results demonstrate exposure to wavelengths region 400–450nm, at sufficiently high dose levels (750Jcm2), induced complete inactivation of a 5-log10 population. Exposure to wavelengths longer than 450nm did not cause significant inactivation. Analysis of 10nm bandwidths between 400 and 450nm confirmed 405(±5)nm light to be most effective for inactivation of L. monocytogenes, with a lesser bactericidal effect also evident at other wavelengths between 400 and 440nm. Identification of the optimum bactericidal wavelength enabled comparison of inactivation using 405(±5)nm filtered light and a 405nm LED array (14nm FWHM). Results demonstrate similar inactivation kinetics, indicating that the applied dose of 405-nm light is the important factor. Use of the 405nm LED array for inactivation of L. monocytogenes and other Listeria species resulted in similar kinetics, with up to 5-log10 reductions with a dose of 185Jcm2. Comparative data for the 405nm light inactivation of L. monocytogenes and other important foodborne pathogens, Escherichia coli, Salmonella enteritidis and Shigella sonnei, is also presented, with L. monocytogenes showing higher susceptibility to inactivation through 405nm light exposure.",
keywords = "visible light, inactivation of microorganisms , 405-nm light, Listeria monocytogenes",
author = "E Endarko and Michelle MacLean and Igor Timoshkin and Scott MacGregor and John Anderson",
year = "2012",
doi = "10.1111/j.1751-1097.2012.01173.x.",
language = "English",
volume = "88",
pages = "1280–1286",
journal = "Photochemistry and Photobiology",
issn = "0031-8655",
number = "5",

}

TY - JOUR

T1 - High-intensity 405 nm light inactivation of Listeria monocytogenes

AU - Endarko, E

AU - MacLean, Michelle

AU - Timoshkin, Igor

AU - MacGregor, Scott

AU - Anderson, John

PY - 2012

Y1 - 2012

N2 - The antimicrobial properties of light is an area of increasing interest. This paper investigates the sensitivity of the significant foodborne pathogen Listeria monocytogenes to selected wavelengths of visible-light. Results demonstrate exposure to wavelengths region 400–450nm, at sufficiently high dose levels (750Jcm2), induced complete inactivation of a 5-log10 population. Exposure to wavelengths longer than 450nm did not cause significant inactivation. Analysis of 10nm bandwidths between 400 and 450nm confirmed 405(±5)nm light to be most effective for inactivation of L. monocytogenes, with a lesser bactericidal effect also evident at other wavelengths between 400 and 440nm. Identification of the optimum bactericidal wavelength enabled comparison of inactivation using 405(±5)nm filtered light and a 405nm LED array (14nm FWHM). Results demonstrate similar inactivation kinetics, indicating that the applied dose of 405-nm light is the important factor. Use of the 405nm LED array for inactivation of L. monocytogenes and other Listeria species resulted in similar kinetics, with up to 5-log10 reductions with a dose of 185Jcm2. Comparative data for the 405nm light inactivation of L. monocytogenes and other important foodborne pathogens, Escherichia coli, Salmonella enteritidis and Shigella sonnei, is also presented, with L. monocytogenes showing higher susceptibility to inactivation through 405nm light exposure.

AB - The antimicrobial properties of light is an area of increasing interest. This paper investigates the sensitivity of the significant foodborne pathogen Listeria monocytogenes to selected wavelengths of visible-light. Results demonstrate exposure to wavelengths region 400–450nm, at sufficiently high dose levels (750Jcm2), induced complete inactivation of a 5-log10 population. Exposure to wavelengths longer than 450nm did not cause significant inactivation. Analysis of 10nm bandwidths between 400 and 450nm confirmed 405(±5)nm light to be most effective for inactivation of L. monocytogenes, with a lesser bactericidal effect also evident at other wavelengths between 400 and 440nm. Identification of the optimum bactericidal wavelength enabled comparison of inactivation using 405(±5)nm filtered light and a 405nm LED array (14nm FWHM). Results demonstrate similar inactivation kinetics, indicating that the applied dose of 405-nm light is the important factor. Use of the 405nm LED array for inactivation of L. monocytogenes and other Listeria species resulted in similar kinetics, with up to 5-log10 reductions with a dose of 185Jcm2. Comparative data for the 405nm light inactivation of L. monocytogenes and other important foodborne pathogens, Escherichia coli, Salmonella enteritidis and Shigella sonnei, is also presented, with L. monocytogenes showing higher susceptibility to inactivation through 405nm light exposure.

KW - visible light

KW - inactivation of microorganisms

KW - 405-nm light

KW - Listeria monocytogenes

U2 - 10.1111/j.1751-1097.2012.01173.x.

DO - 10.1111/j.1751-1097.2012.01173.x.

M3 - Article

VL - 88

SP - 1280

EP - 1286

JO - Photochemistry and Photobiology

T2 - Photochemistry and Photobiology

JF - Photochemistry and Photobiology

SN - 0031-8655

IS - 5

ER -