High-frequency EMI attenuation at source with the auxiliary commutated pole inverter

Apollo Charalambous, Xibo Yuan, Neville McNeill

Research output: Contribution to journalArticle

11 Citations (Scopus)
22 Downloads (Pure)

Abstract

Fast-switching power converters are a key enabling technology for the More Electric Aircraft (MEA), but the generated Electromagnetic Interference (EMI) poses significant challenges to the electrification effort. To meet the stringent aerospace EMI standards, passive filters are commonly employed, despite the weight and size constraints imposed by the MEA. Alternatively, the EMI source, i.e., the high dv/dt and di/dt slew rates, can be addressed through waveform-shaping techniques. For example, while most soft-switching converters can reduce switching loss, they do so by switching the semiconductor devices in a slower and smoother manner, resulting in the attenuation of high-frequency harmonics. This paper examines the Auxiliary Commutated Pole Inverter (ACPI) topology, and its first contribution is the attenuation of the high-frequency content of its EMI source, that is, the output voltage, in a predictable manner, through the active control of the resonant circuit. This is achieved by firstly discussing the time-domain characteristics of trapezoidal and S-shaped pulse-trains that lead to attenuated high-frequency harmonic content, and secondly, by analysing the equivalent LC circuit of the ACPI. The design of the inverter is then focused on the active control of the resonant parameters, for a predetermined and enhanced output voltage high-frequency response. The second contribution of this paper is the comparison of the EMI performance of hard switching and of three soft-switching modes, fixed-timing control, variable-timing control, and capacitive turn-offs, and how this informs important metrics like power efficiency, current stress, and implementation complexity. Lastly, the third contribution is on the trade-offs that arise when the primary design goal is enhanced EMI performance, as opposed to switching loss reduction. A 5-kW, 3-phase ACPI prototype is used for validating the high-frequency content attenuation at source. It is shown that the ACPI can achieve a 37-dB harmonic attenuation of its output voltage at 4 MHz, compared to a hard-switched inverter.

Original languageEnglish
Number of pages16
JournalIEEE Transactions on Power Electronics
Early online date22 Aug 2017
DOIs
Publication statusE-pub ahead of print - 22 Aug 2017

Fingerprint

Signal interference
Poles
Electric potential
Aircraft
Passive filters
Resonant circuits
Power converters
Semiconductor devices
Frequency response
Topology
Networks (circuits)

Keywords

  • aerospace electronics
  • attenuation
  • auxiliary commutated pole inverter
  • electromagnetic interference
  • EMI
  • fixed timing
  • frequency response

Cite this

@article{5be1658859b94818b66dff854ff13ead,
title = "High-frequency EMI attenuation at source with the auxiliary commutated pole inverter",
abstract = "Fast-switching power converters are a key enabling technology for the More Electric Aircraft (MEA), but the generated Electromagnetic Interference (EMI) poses significant challenges to the electrification effort. To meet the stringent aerospace EMI standards, passive filters are commonly employed, despite the weight and size constraints imposed by the MEA. Alternatively, the EMI source, i.e., the high dv/dt and di/dt slew rates, can be addressed through waveform-shaping techniques. For example, while most soft-switching converters can reduce switching loss, they do so by switching the semiconductor devices in a slower and smoother manner, resulting in the attenuation of high-frequency harmonics. This paper examines the Auxiliary Commutated Pole Inverter (ACPI) topology, and its first contribution is the attenuation of the high-frequency content of its EMI source, that is, the output voltage, in a predictable manner, through the active control of the resonant circuit. This is achieved by firstly discussing the time-domain characteristics of trapezoidal and S-shaped pulse-trains that lead to attenuated high-frequency harmonic content, and secondly, by analysing the equivalent LC circuit of the ACPI. The design of the inverter is then focused on the active control of the resonant parameters, for a predetermined and enhanced output voltage high-frequency response. The second contribution of this paper is the comparison of the EMI performance of hard switching and of three soft-switching modes, fixed-timing control, variable-timing control, and capacitive turn-offs, and how this informs important metrics like power efficiency, current stress, and implementation complexity. Lastly, the third contribution is on the trade-offs that arise when the primary design goal is enhanced EMI performance, as opposed to switching loss reduction. A 5-kW, 3-phase ACPI prototype is used for validating the high-frequency content attenuation at source. It is shown that the ACPI can achieve a 37-dB harmonic attenuation of its output voltage at 4 MHz, compared to a hard-switched inverter.",
keywords = "aerospace electronics, attenuation, auxiliary commutated pole inverter, electromagnetic interference, EMI, fixed timing, frequency response",
author = "Apollo Charalambous and Xibo Yuan and Neville McNeill",
note = "(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.",
year = "2017",
month = "8",
day = "22",
doi = "10.1109/TPEL.2017.2743041",
language = "English",
journal = "IEEE Transactions on Power Electronics",
issn = "0885-8993",

}

High-frequency EMI attenuation at source with the auxiliary commutated pole inverter. / Charalambous, Apollo; Yuan, Xibo; McNeill, Neville.

In: IEEE Transactions on Power Electronics, 22.08.2017.

Research output: Contribution to journalArticle

TY - JOUR

T1 - High-frequency EMI attenuation at source with the auxiliary commutated pole inverter

AU - Charalambous, Apollo

AU - Yuan, Xibo

AU - McNeill, Neville

N1 - (c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

PY - 2017/8/22

Y1 - 2017/8/22

N2 - Fast-switching power converters are a key enabling technology for the More Electric Aircraft (MEA), but the generated Electromagnetic Interference (EMI) poses significant challenges to the electrification effort. To meet the stringent aerospace EMI standards, passive filters are commonly employed, despite the weight and size constraints imposed by the MEA. Alternatively, the EMI source, i.e., the high dv/dt and di/dt slew rates, can be addressed through waveform-shaping techniques. For example, while most soft-switching converters can reduce switching loss, they do so by switching the semiconductor devices in a slower and smoother manner, resulting in the attenuation of high-frequency harmonics. This paper examines the Auxiliary Commutated Pole Inverter (ACPI) topology, and its first contribution is the attenuation of the high-frequency content of its EMI source, that is, the output voltage, in a predictable manner, through the active control of the resonant circuit. This is achieved by firstly discussing the time-domain characteristics of trapezoidal and S-shaped pulse-trains that lead to attenuated high-frequency harmonic content, and secondly, by analysing the equivalent LC circuit of the ACPI. The design of the inverter is then focused on the active control of the resonant parameters, for a predetermined and enhanced output voltage high-frequency response. The second contribution of this paper is the comparison of the EMI performance of hard switching and of three soft-switching modes, fixed-timing control, variable-timing control, and capacitive turn-offs, and how this informs important metrics like power efficiency, current stress, and implementation complexity. Lastly, the third contribution is on the trade-offs that arise when the primary design goal is enhanced EMI performance, as opposed to switching loss reduction. A 5-kW, 3-phase ACPI prototype is used for validating the high-frequency content attenuation at source. It is shown that the ACPI can achieve a 37-dB harmonic attenuation of its output voltage at 4 MHz, compared to a hard-switched inverter.

AB - Fast-switching power converters are a key enabling technology for the More Electric Aircraft (MEA), but the generated Electromagnetic Interference (EMI) poses significant challenges to the electrification effort. To meet the stringent aerospace EMI standards, passive filters are commonly employed, despite the weight and size constraints imposed by the MEA. Alternatively, the EMI source, i.e., the high dv/dt and di/dt slew rates, can be addressed through waveform-shaping techniques. For example, while most soft-switching converters can reduce switching loss, they do so by switching the semiconductor devices in a slower and smoother manner, resulting in the attenuation of high-frequency harmonics. This paper examines the Auxiliary Commutated Pole Inverter (ACPI) topology, and its first contribution is the attenuation of the high-frequency content of its EMI source, that is, the output voltage, in a predictable manner, through the active control of the resonant circuit. This is achieved by firstly discussing the time-domain characteristics of trapezoidal and S-shaped pulse-trains that lead to attenuated high-frequency harmonic content, and secondly, by analysing the equivalent LC circuit of the ACPI. The design of the inverter is then focused on the active control of the resonant parameters, for a predetermined and enhanced output voltage high-frequency response. The second contribution of this paper is the comparison of the EMI performance of hard switching and of three soft-switching modes, fixed-timing control, variable-timing control, and capacitive turn-offs, and how this informs important metrics like power efficiency, current stress, and implementation complexity. Lastly, the third contribution is on the trade-offs that arise when the primary design goal is enhanced EMI performance, as opposed to switching loss reduction. A 5-kW, 3-phase ACPI prototype is used for validating the high-frequency content attenuation at source. It is shown that the ACPI can achieve a 37-dB harmonic attenuation of its output voltage at 4 MHz, compared to a hard-switched inverter.

KW - aerospace electronics

KW - attenuation

KW - auxiliary commutated pole inverter

KW - electromagnetic interference

KW - EMI

KW - fixed timing

KW - frequency response

UR - http://www.scopus.com/inward/record.url?scp=85028499969&partnerID=8YFLogxK

UR - http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=63

U2 - 10.1109/TPEL.2017.2743041

DO - 10.1109/TPEL.2017.2743041

M3 - Article

JO - IEEE Transactions on Power Electronics

JF - IEEE Transactions on Power Electronics

SN - 0885-8993

ER -