High dimensional sensitivity analysis using surrogate modeling and high dimensional model representation

Martin Kubicek, Edmondo Minisci, Marco Cisternino

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

In this paper, a new non-intrusive method for the propagation of uncertainty and sensitivity analysis is presented. The method is based on the cut-HDMR approach, which is here derived in a different way and new conclusions are presented. The cut-HDMR approach decomposes the stochastic space into sub-domains, which are separately interpolated via a selected interpolation technique. This leads to a dramatic reduction of necessary samples for high dimensional spaces and decreases the influence of the Curse of Dimensionality. The proposed non-intrusive method is based on the coupling of an interpolation technique with the cut-HDMR (high dimension model representation) approach. The new conclusions obtained from the new derivation of the cut-HDMR approach allow one to interpolate each stochastic domain separately, including all stochastic variables and interactions between variables. Moreover, the same conclusions allow one to neglect non-important stochastic domains and therefore, drastically reduce the number of samples to detect and interpolate the higher order interactions. A new sampling strategy is introduced, which is based on a tensor product, but it uses the idea of Smoylak sparse grid for higher domains. For this work, the multi-dimensional Lagrange interpolation technique is selected and is applied for all parts of the cut-HDMR approach. However, the nature of the method allows one to use a combination of various interpolation techniques. The sensitivity analysis is performed on the surrogate model using the Monte Carlo sampling. In this work, the Sobol's approach is followed and sensitivity indices are established for each variable and interaction. Moreover, due to the obtained conclusions, the separate surrogate models allow one to visualize the uncertainty in the high dimensional space via histograms. The usage of a histogram for each stochastic domain allows one to establish full statistical properties of a given stochastic domain. This helps the user to better understand the stochastic propagation for the model of interest. The proposed interpolation technique and sensitivity analysis approach are tested on a simple example and applied on the well-known Borehole problem. Results of the proposed method are compared to the Monte Carlo sampling using the mean value and the standard deviation. Results of the sensitivity analysis of the Borehole case are compared to the literature results and the statistical visualization of each variable is provided.
LanguageEnglish
Pages393-414
Number of pages22
JournalInternational Journal for Uncertainty Quantification
Volume5
Issue number5
DOIs
Publication statusPublished - Oct 2015

Fingerprint

High Dimensional Model Representation
Dimensional Analysis
Sensitivity analysis
Sensitivity Analysis
Interpolation
High-dimensional
Interpolate
Modeling
Sampling
Boreholes
Surrogate Model
Monte Carlo Sampling
Histogram
Uncertainty analysis
Interaction
Propagation
Sparse Grids
Tensors
Sampling Strategy
Uncertainty Analysis

Keywords

  • sensitivity analysis
  • uncertainty quantification
  • high dimensional spaces
  • cut-HDMR

Cite this

@article{988d60b8a2e244488656422c0f09a4a5,
title = "High dimensional sensitivity analysis using surrogate modeling and high dimensional model representation",
abstract = "In this paper, a new non-intrusive method for the propagation of uncertainty and sensitivity analysis is presented. The method is based on the cut-HDMR approach, which is here derived in a different way and new conclusions are presented. The cut-HDMR approach decomposes the stochastic space into sub-domains, which are separately interpolated via a selected interpolation technique. This leads to a dramatic reduction of necessary samples for high dimensional spaces and decreases the influence of the Curse of Dimensionality. The proposed non-intrusive method is based on the coupling of an interpolation technique with the cut-HDMR (high dimension model representation) approach. The new conclusions obtained from the new derivation of the cut-HDMR approach allow one to interpolate each stochastic domain separately, including all stochastic variables and interactions between variables. Moreover, the same conclusions allow one to neglect non-important stochastic domains and therefore, drastically reduce the number of samples to detect and interpolate the higher order interactions. A new sampling strategy is introduced, which is based on a tensor product, but it uses the idea of Smoylak sparse grid for higher domains. For this work, the multi-dimensional Lagrange interpolation technique is selected and is applied for all parts of the cut-HDMR approach. However, the nature of the method allows one to use a combination of various interpolation techniques. The sensitivity analysis is performed on the surrogate model using the Monte Carlo sampling. In this work, the Sobol's approach is followed and sensitivity indices are established for each variable and interaction. Moreover, due to the obtained conclusions, the separate surrogate models allow one to visualize the uncertainty in the high dimensional space via histograms. The usage of a histogram for each stochastic domain allows one to establish full statistical properties of a given stochastic domain. This helps the user to better understand the stochastic propagation for the model of interest. The proposed interpolation technique and sensitivity analysis approach are tested on a simple example and applied on the well-known Borehole problem. Results of the proposed method are compared to the Monte Carlo sampling using the mean value and the standard deviation. Results of the sensitivity analysis of the Borehole case are compared to the literature results and the statistical visualization of each variable is provided.",
keywords = "sensitivity analysis, uncertainty quantification, high dimensional spaces, cut-HDMR",
author = "Martin Kubicek and Edmondo Minisci and Marco Cisternino",
year = "2015",
month = "10",
doi = "10.1615/Int.J.UncertaintyQuantification.2015012033",
language = "English",
volume = "5",
pages = "393--414",
journal = "International Journal for Uncertainty Quantification",
issn = "2152-5080",
number = "5",

}

High dimensional sensitivity analysis using surrogate modeling and high dimensional model representation. / Kubicek, Martin; Minisci, Edmondo; Cisternino, Marco.

In: International Journal for Uncertainty Quantification, Vol. 5, No. 5, 10.2015, p. 393-414.

Research output: Contribution to journalArticle

TY - JOUR

T1 - High dimensional sensitivity analysis using surrogate modeling and high dimensional model representation

AU - Kubicek, Martin

AU - Minisci, Edmondo

AU - Cisternino, Marco

PY - 2015/10

Y1 - 2015/10

N2 - In this paper, a new non-intrusive method for the propagation of uncertainty and sensitivity analysis is presented. The method is based on the cut-HDMR approach, which is here derived in a different way and new conclusions are presented. The cut-HDMR approach decomposes the stochastic space into sub-domains, which are separately interpolated via a selected interpolation technique. This leads to a dramatic reduction of necessary samples for high dimensional spaces and decreases the influence of the Curse of Dimensionality. The proposed non-intrusive method is based on the coupling of an interpolation technique with the cut-HDMR (high dimension model representation) approach. The new conclusions obtained from the new derivation of the cut-HDMR approach allow one to interpolate each stochastic domain separately, including all stochastic variables and interactions between variables. Moreover, the same conclusions allow one to neglect non-important stochastic domains and therefore, drastically reduce the number of samples to detect and interpolate the higher order interactions. A new sampling strategy is introduced, which is based on a tensor product, but it uses the idea of Smoylak sparse grid for higher domains. For this work, the multi-dimensional Lagrange interpolation technique is selected and is applied for all parts of the cut-HDMR approach. However, the nature of the method allows one to use a combination of various interpolation techniques. The sensitivity analysis is performed on the surrogate model using the Monte Carlo sampling. In this work, the Sobol's approach is followed and sensitivity indices are established for each variable and interaction. Moreover, due to the obtained conclusions, the separate surrogate models allow one to visualize the uncertainty in the high dimensional space via histograms. The usage of a histogram for each stochastic domain allows one to establish full statistical properties of a given stochastic domain. This helps the user to better understand the stochastic propagation for the model of interest. The proposed interpolation technique and sensitivity analysis approach are tested on a simple example and applied on the well-known Borehole problem. Results of the proposed method are compared to the Monte Carlo sampling using the mean value and the standard deviation. Results of the sensitivity analysis of the Borehole case are compared to the literature results and the statistical visualization of each variable is provided.

AB - In this paper, a new non-intrusive method for the propagation of uncertainty and sensitivity analysis is presented. The method is based on the cut-HDMR approach, which is here derived in a different way and new conclusions are presented. The cut-HDMR approach decomposes the stochastic space into sub-domains, which are separately interpolated via a selected interpolation technique. This leads to a dramatic reduction of necessary samples for high dimensional spaces and decreases the influence of the Curse of Dimensionality. The proposed non-intrusive method is based on the coupling of an interpolation technique with the cut-HDMR (high dimension model representation) approach. The new conclusions obtained from the new derivation of the cut-HDMR approach allow one to interpolate each stochastic domain separately, including all stochastic variables and interactions between variables. Moreover, the same conclusions allow one to neglect non-important stochastic domains and therefore, drastically reduce the number of samples to detect and interpolate the higher order interactions. A new sampling strategy is introduced, which is based on a tensor product, but it uses the idea of Smoylak sparse grid for higher domains. For this work, the multi-dimensional Lagrange interpolation technique is selected and is applied for all parts of the cut-HDMR approach. However, the nature of the method allows one to use a combination of various interpolation techniques. The sensitivity analysis is performed on the surrogate model using the Monte Carlo sampling. In this work, the Sobol's approach is followed and sensitivity indices are established for each variable and interaction. Moreover, due to the obtained conclusions, the separate surrogate models allow one to visualize the uncertainty in the high dimensional space via histograms. The usage of a histogram for each stochastic domain allows one to establish full statistical properties of a given stochastic domain. This helps the user to better understand the stochastic propagation for the model of interest. The proposed interpolation technique and sensitivity analysis approach are tested on a simple example and applied on the well-known Borehole problem. Results of the proposed method are compared to the Monte Carlo sampling using the mean value and the standard deviation. Results of the sensitivity analysis of the Borehole case are compared to the literature results and the statistical visualization of each variable is provided.

KW - sensitivity analysis

KW - uncertainty quantification

KW - high dimensional spaces

KW - cut-HDMR

UR - http://dl.begellhouse.com/journals/52034eb04b657aea.html

U2 - 10.1615/Int.J.UncertaintyQuantification.2015012033

DO - 10.1615/Int.J.UncertaintyQuantification.2015012033

M3 - Article

VL - 5

SP - 393

EP - 414

JO - International Journal for Uncertainty Quantification

T2 - International Journal for Uncertainty Quantification

JF - International Journal for Uncertainty Quantification

SN - 2152-5080

IS - 5

ER -