Abstract
Language | English |
---|---|
Pages | 2727-2742 |
Number of pages | 16 |
Journal | Journal of Geophysical Research: Space Physics |
Volume | 121 |
Issue number | 3 |
Early online date | 18 Mar 2016 |
DOIs | |
Publication status | Published - 31 Mar 2016 |
Fingerprint
Keywords
- artificial ionospheric turbulence
- electromagnetic waves
- high frequency
- Alfven waves
- magnetic equitorial region
Cite this
}
HF wave propagation and induced ionospheric turbulence in the magnetic equatorial region. / Eliasson, B.; Papadopoulos, K.
In: Journal of Geophysical Research: Space Physics, Vol. 121, No. 3, 31.03.2016, p. 2727-2742.Research output: Contribution to journal › Article
TY - JOUR
T1 - HF wave propagation and induced ionospheric turbulence in the magnetic equatorial region
AU - Eliasson, B.
AU - Papadopoulos, K.
PY - 2016/3/31
Y1 - 2016/3/31
N2 - The propagation and excitation of Artificial Ionospheric Turbulence (AIT) in the magnetic equatorial region by high frequency (HF) electromagnetic (EM) waves injected into the overhead ionospheric layer is examined. EM waves with ordinary (O) mode polarization reach the critical layer only if their incidence angle is within the Spitze cone. Near the critical layer the wave electric field is linearly polarized and directed parallel to the magnetic field lines. For large enough amplitudes, the O mode becomes unstable to the 4-wave oscillating two-stream instability (OTSI) and the 3-wave parametric decay instability (PDI) driving large amplitude Langmuir and ion acoustic waves. The interaction between the induced Langmuir turbulence and electrons located within the 50-100 km wide transmitter heating cone at an altitude of 230 km can potentially accelerate the electrons along the magnetic field to several tens to a few hundreds of eV, far beyond the thresholds for optical emissions and ionization of the neutral gas. It could furthermore result in generation of shear Alfvén waves such as have been recently observed in laboratory experiments at the UCLA Large Plasma Device (LAPD).
AB - The propagation and excitation of Artificial Ionospheric Turbulence (AIT) in the magnetic equatorial region by high frequency (HF) electromagnetic (EM) waves injected into the overhead ionospheric layer is examined. EM waves with ordinary (O) mode polarization reach the critical layer only if their incidence angle is within the Spitze cone. Near the critical layer the wave electric field is linearly polarized and directed parallel to the magnetic field lines. For large enough amplitudes, the O mode becomes unstable to the 4-wave oscillating two-stream instability (OTSI) and the 3-wave parametric decay instability (PDI) driving large amplitude Langmuir and ion acoustic waves. The interaction between the induced Langmuir turbulence and electrons located within the 50-100 km wide transmitter heating cone at an altitude of 230 km can potentially accelerate the electrons along the magnetic field to several tens to a few hundreds of eV, far beyond the thresholds for optical emissions and ionization of the neutral gas. It could furthermore result in generation of shear Alfvén waves such as have been recently observed in laboratory experiments at the UCLA Large Plasma Device (LAPD).
KW - artificial ionospheric turbulence
KW - electromagnetic waves
KW - high frequency
KW - Alfven waves
KW - magnetic equitorial region
UR - http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015JA022323/abstract
U2 - 10.1002/2015JA022323
DO - 10.1002/2015JA022323
M3 - Article
VL - 121
SP - 2727
EP - 2742
JO - Journal of Geophysical Research: Space Physics
T2 - Journal of Geophysical Research: Space Physics
JF - Journal of Geophysical Research: Space Physics
SN - 2169-9402
IS - 3
ER -