Heme oxygenase-1 attenuates cadmium-induced mitochondrial-caspase 3- dependent apoptosis in human hepatoma cell line

Akeem O. Lawal, Jeanine L. Marnewick, Elizabeth M. Ellis

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Background: Cadmium (Cd) is a well known environmental and industrial toxicant causing damaging effects in numerous organs. In this study, we examined the role of heme oxygenase-1 (HO-1) in modulating the Cd-induced apoptosis in human hepatoma (HepG2) cells after 24 h exposure. Methods: HepG2 cells were exposed to 5 and 10 μM Cd as CdCl2 for 24 h while other sets of cells were pre-treated with either 10 μM Cobalt protoporphyrin (CoPPIX) or 10 μM Tin protoporphyrin (SnPPIX) for 24 h, or 50 μM Z-DEVD-FMK for 1 h before exposure to 5 and 10 μM CdCl2 for 24 h. Expressions of caspase 3, cytosolic cytochrome c, mitochondrial Bax and anti-apoptotic BCL-xl proteins were assessed by western blot. Intracellular reactive oxygen species (ROS) production was determined using the dihydrofluorescein diacetate (H2DFA) method. Cell viability was assessed by MTT assay, while a flow cytometry method was used to assess the level of apoptosis in the cell populations. Results: Our results show that there were a significant increase in the expression of cytosolic cytochrome c, mitochondrial Bax protein, and caspase 3 at 5 and 10 μM compared to the control, but these increases were attenuated by the presence of CoPPIX. The presence of SnPPIX significantly enhanced Cd-induced caspase 3 activities. CoPPIX significantly decreased the level of ROS production by 24.6 and 22.2 % in 5 and 10 μM CdCl2, respectively, but SnPPIX caused a significant increase in ROS production in the presence of CdCl2. HepG2 cell viability was also significantly impaired by 13.89 and 32.53 % in the presence of 5 and 10 μM CdCl2, respectively, but the presence of CoPPIX and Z-DEVD-FMK significantly enhanced cell survival, while SnPPIX enhanced Cd-impaired cell viability. The presence of CoPPIX and Z-DEVD-FMK also significantly decreased the population of apoptotic and necrotic cells compared with Cd. Conclusion: In summary, the present study showed that HO-1 attenuates the Cd-induced caspase 3 dependent pathway of apoptosis in HepG2 cells, probably by modulating Cd-induced oxidative stress.

LanguageEnglish
Article number41
Number of pages13
JournalBMC Pharmacology and Toxicology
Volume16
DOIs
Publication statusPublished - 15 Dec 2015

Fingerprint

Heme Oxygenase-1
Cadmium
Caspase 3
Hepatocellular Carcinoma
Cadmium Chloride
Apoptosis
Cell Line
Hep G2 Cells
Cell Survival
Reactive Oxygen Species
Cytochromes c
bcl-2-Associated X Protein
Mitochondrial Proteins
Population
Flow Cytometry
Oxidative Stress
Western Blotting

Keywords

  • apoptosis
  • Cadmium
  • Caspase-3
  • cytochrome c
  • heme oxygenase-1
  • human hepatoma cells

Cite this

@article{3a3c2cb5d5a8497587e823fe178180cc,
title = "Heme oxygenase-1 attenuates cadmium-induced mitochondrial-caspase 3- dependent apoptosis in human hepatoma cell line",
abstract = "Background: Cadmium (Cd) is a well known environmental and industrial toxicant causing damaging effects in numerous organs. In this study, we examined the role of heme oxygenase-1 (HO-1) in modulating the Cd-induced apoptosis in human hepatoma (HepG2) cells after 24 h exposure. Methods: HepG2 cells were exposed to 5 and 10 μM Cd as CdCl2 for 24 h while other sets of cells were pre-treated with either 10 μM Cobalt protoporphyrin (CoPPIX) or 10 μM Tin protoporphyrin (SnPPIX) for 24 h, or 50 μM Z-DEVD-FMK for 1 h before exposure to 5 and 10 μM CdCl2 for 24 h. Expressions of caspase 3, cytosolic cytochrome c, mitochondrial Bax and anti-apoptotic BCL-xl proteins were assessed by western blot. Intracellular reactive oxygen species (ROS) production was determined using the dihydrofluorescein diacetate (H2DFA) method. Cell viability was assessed by MTT assay, while a flow cytometry method was used to assess the level of apoptosis in the cell populations. Results: Our results show that there were a significant increase in the expression of cytosolic cytochrome c, mitochondrial Bax protein, and caspase 3 at 5 and 10 μM compared to the control, but these increases were attenuated by the presence of CoPPIX. The presence of SnPPIX significantly enhanced Cd-induced caspase 3 activities. CoPPIX significantly decreased the level of ROS production by 24.6 and 22.2 {\%} in 5 and 10 μM CdCl2, respectively, but SnPPIX caused a significant increase in ROS production in the presence of CdCl2. HepG2 cell viability was also significantly impaired by 13.89 and 32.53 {\%} in the presence of 5 and 10 μM CdCl2, respectively, but the presence of CoPPIX and Z-DEVD-FMK significantly enhanced cell survival, while SnPPIX enhanced Cd-impaired cell viability. The presence of CoPPIX and Z-DEVD-FMK also significantly decreased the population of apoptotic and necrotic cells compared with Cd. Conclusion: In summary, the present study showed that HO-1 attenuates the Cd-induced caspase 3 dependent pathway of apoptosis in HepG2 cells, probably by modulating Cd-induced oxidative stress.",
keywords = "apoptosis, Cadmium, Caspase-3, cytochrome c, heme oxygenase-1, human hepatoma cells",
author = "Lawal, {Akeem O.} and Marnewick, {Jeanine L.} and Ellis, {Elizabeth M.}",
year = "2015",
month = "12",
day = "15",
doi = "10.1186/s40360-015-0040-y",
language = "English",
volume = "16",
journal = "BMC Pharmacology and Toxicology",
issn = "2050-6511",

}

Heme oxygenase-1 attenuates cadmium-induced mitochondrial-caspase 3- dependent apoptosis in human hepatoma cell line. / Lawal, Akeem O.; Marnewick, Jeanine L.; Ellis, Elizabeth M.

In: BMC Pharmacology and Toxicology, Vol. 16, 41, 15.12.2015.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Heme oxygenase-1 attenuates cadmium-induced mitochondrial-caspase 3- dependent apoptosis in human hepatoma cell line

AU - Lawal, Akeem O.

AU - Marnewick, Jeanine L.

AU - Ellis, Elizabeth M.

PY - 2015/12/15

Y1 - 2015/12/15

N2 - Background: Cadmium (Cd) is a well known environmental and industrial toxicant causing damaging effects in numerous organs. In this study, we examined the role of heme oxygenase-1 (HO-1) in modulating the Cd-induced apoptosis in human hepatoma (HepG2) cells after 24 h exposure. Methods: HepG2 cells were exposed to 5 and 10 μM Cd as CdCl2 for 24 h while other sets of cells were pre-treated with either 10 μM Cobalt protoporphyrin (CoPPIX) or 10 μM Tin protoporphyrin (SnPPIX) for 24 h, or 50 μM Z-DEVD-FMK for 1 h before exposure to 5 and 10 μM CdCl2 for 24 h. Expressions of caspase 3, cytosolic cytochrome c, mitochondrial Bax and anti-apoptotic BCL-xl proteins were assessed by western blot. Intracellular reactive oxygen species (ROS) production was determined using the dihydrofluorescein diacetate (H2DFA) method. Cell viability was assessed by MTT assay, while a flow cytometry method was used to assess the level of apoptosis in the cell populations. Results: Our results show that there were a significant increase in the expression of cytosolic cytochrome c, mitochondrial Bax protein, and caspase 3 at 5 and 10 μM compared to the control, but these increases were attenuated by the presence of CoPPIX. The presence of SnPPIX significantly enhanced Cd-induced caspase 3 activities. CoPPIX significantly decreased the level of ROS production by 24.6 and 22.2 % in 5 and 10 μM CdCl2, respectively, but SnPPIX caused a significant increase in ROS production in the presence of CdCl2. HepG2 cell viability was also significantly impaired by 13.89 and 32.53 % in the presence of 5 and 10 μM CdCl2, respectively, but the presence of CoPPIX and Z-DEVD-FMK significantly enhanced cell survival, while SnPPIX enhanced Cd-impaired cell viability. The presence of CoPPIX and Z-DEVD-FMK also significantly decreased the population of apoptotic and necrotic cells compared with Cd. Conclusion: In summary, the present study showed that HO-1 attenuates the Cd-induced caspase 3 dependent pathway of apoptosis in HepG2 cells, probably by modulating Cd-induced oxidative stress.

AB - Background: Cadmium (Cd) is a well known environmental and industrial toxicant causing damaging effects in numerous organs. In this study, we examined the role of heme oxygenase-1 (HO-1) in modulating the Cd-induced apoptosis in human hepatoma (HepG2) cells after 24 h exposure. Methods: HepG2 cells were exposed to 5 and 10 μM Cd as CdCl2 for 24 h while other sets of cells were pre-treated with either 10 μM Cobalt protoporphyrin (CoPPIX) or 10 μM Tin protoporphyrin (SnPPIX) for 24 h, or 50 μM Z-DEVD-FMK for 1 h before exposure to 5 and 10 μM CdCl2 for 24 h. Expressions of caspase 3, cytosolic cytochrome c, mitochondrial Bax and anti-apoptotic BCL-xl proteins were assessed by western blot. Intracellular reactive oxygen species (ROS) production was determined using the dihydrofluorescein diacetate (H2DFA) method. Cell viability was assessed by MTT assay, while a flow cytometry method was used to assess the level of apoptosis in the cell populations. Results: Our results show that there were a significant increase in the expression of cytosolic cytochrome c, mitochondrial Bax protein, and caspase 3 at 5 and 10 μM compared to the control, but these increases were attenuated by the presence of CoPPIX. The presence of SnPPIX significantly enhanced Cd-induced caspase 3 activities. CoPPIX significantly decreased the level of ROS production by 24.6 and 22.2 % in 5 and 10 μM CdCl2, respectively, but SnPPIX caused a significant increase in ROS production in the presence of CdCl2. HepG2 cell viability was also significantly impaired by 13.89 and 32.53 % in the presence of 5 and 10 μM CdCl2, respectively, but the presence of CoPPIX and Z-DEVD-FMK significantly enhanced cell survival, while SnPPIX enhanced Cd-impaired cell viability. The presence of CoPPIX and Z-DEVD-FMK also significantly decreased the population of apoptotic and necrotic cells compared with Cd. Conclusion: In summary, the present study showed that HO-1 attenuates the Cd-induced caspase 3 dependent pathway of apoptosis in HepG2 cells, probably by modulating Cd-induced oxidative stress.

KW - apoptosis

KW - Cadmium

KW - Caspase-3

KW - cytochrome c

KW - heme oxygenase-1

KW - human hepatoma cells

UR - http://www.scopus.com/inward/record.url?scp=84949845744&partnerID=8YFLogxK

U2 - 10.1186/s40360-015-0040-y

DO - 10.1186/s40360-015-0040-y

M3 - Article

VL - 16

JO - BMC Pharmacology and Toxicology

T2 - BMC Pharmacology and Toxicology

JF - BMC Pharmacology and Toxicology

SN - 2050-6511

M1 - 41

ER -