TY - JOUR
T1 - Harmonic decomposition of forces and estimates of reduced mean flow in jackets subjected to waves and current
AU - Archer, Aidan J.
AU - Taylor, Paul H.
AU - Wolgamot, Hugh
AU - Orszaghova, Jana
AU - Dai, Saishuai
PY - 2025/4/14
Y1 - 2025/4/14
N2 - The interaction between porous structures and flows with mean and oscillatory components has many applications in fluid dynamics. One such application is the hydrodynamic forces on offshore jacket structures from waves and current, which have been shown to give a significant blockage effect, leading to a reduction in drag forces. To better understand this, we derived analytical expressions that describe the effect of current on drag forces from large waves, and conducted experiments that measured forces on a model jacket in collinear waves and currents. We utilised symmetry and phase-inversion techniques, relying on the underlying physics of wave structure interaction, to separate Morison drag and inertia-type forces and to decompose these forces into their respective frequency harmonics. We find that the odd harmonics of the drag force mostly contain the loads from waves, while even harmonics vary much more rapidly with the current speed flowing through the jacket. At the time of peak force, these current speeds were estimated to be 40 % of the undisturbed current and 50 % of the industry-standard estimates, a result that has significant implications for design and re-assessment of jackets. At times away from the peak force, when there are no waves and only current, the blockage effects are reduced. Hence, the variation in blocked current speeds appears to occur on a relatively fast time scale similar to the compact wave envelope. These findings may be generalisable to any jacket-type structure in flows with mean and high Keulegan–Carpenter number oscillatory components.
AB - The interaction between porous structures and flows with mean and oscillatory components has many applications in fluid dynamics. One such application is the hydrodynamic forces on offshore jacket structures from waves and current, which have been shown to give a significant blockage effect, leading to a reduction in drag forces. To better understand this, we derived analytical expressions that describe the effect of current on drag forces from large waves, and conducted experiments that measured forces on a model jacket in collinear waves and currents. We utilised symmetry and phase-inversion techniques, relying on the underlying physics of wave structure interaction, to separate Morison drag and inertia-type forces and to decompose these forces into their respective frequency harmonics. We find that the odd harmonics of the drag force mostly contain the loads from waves, while even harmonics vary much more rapidly with the current speed flowing through the jacket. At the time of peak force, these current speeds were estimated to be 40 % of the undisturbed current and 50 % of the industry-standard estimates, a result that has significant implications for design and re-assessment of jackets. At times away from the peak force, when there are no waves and only current, the blockage effects are reduced. Hence, the variation in blocked current speeds appears to occur on a relatively fast time scale similar to the compact wave envelope. These findings may be generalisable to any jacket-type structure in flows with mean and high Keulegan–Carpenter number oscillatory components.
KW - waves
KW - free-surface flows
KW - surface gravity waves
U2 - 10.1017/jfm.2025.180
DO - 10.1017/jfm.2025.180
M3 - Article
SN - 0022-1120
VL - 1009
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
M1 - A7
ER -