Graphene/fly ash geopolymeric composites as self-sensing structural materials

Mohamed Saafi, Pik Leung Tang, Mahbubur Rahman, Fiona Sillars, John Liggat, Xiangming Zhou

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

The reduction of graphene oxide during the processing of fly ash-based geopolymers offers a completely new way of developing low-cost multifunctional materials with significantly improved mechanical and electrical properties for civil engineering applications such as bridges, buildings and roads. In this paper, we present for the first time the self-sensing capabilities of fly ash-based geopolymeric composites containing in situ reduced graphene oxide (rGO). Geopolymeric composites with rGO concentrations of 0.0, 0.1 and 0.35% by weight were prepared and their morphology and conductivity were determined. The piezoresistive effect of the rGO-geopolymeric composites was also determined under tension and compression. The Fourier transform infrared spectroscopy (FTIR) results indicate that the rGO sheets can easily be reduced during synthesis of geopolymers due to the effect of the alkaline solution on the functional groups of GO. The scanning electron microscope (SEM) images showed that the majority of pores and voids within the geopolymers were significantly reduced due to the addition of rGO. The rGO increased the electrical conductivity of the fly ash-based rGO-geopolymeric composites from 0.77 S m−1 at 0.0 wt% to 2.38 S m−1 at 0.35 wt%. The rGO also increased the gauge factor by as much as 112% and 103% for samples subjected to tension and compression, respectively.
Original languageEnglish
JournalSmart Materials and Structures
Volume23
Issue number6
Early online date16 Apr 2014
DOIs
Publication statusPublished - 2014

Keywords

  • fly ash
  • geopolymer
  • graphene
  • composite
  • self-sensing

Fingerprint Dive into the research topics of 'Graphene/fly ash geopolymeric composites as self-sensing structural materials'. Together they form a unique fingerprint.

  • Cite this