Generation of ELF waves during HF heating of the ionosphere at midlatitudes

A. S. Sharma, B. Eliasson, X. Shao, K. Papadopoulos

Research output: Contribution to journalArticle

4 Citations (Scopus)
85 Downloads (Pure)

Abstract

Modulated high frequency radio frequency heating of the ionospheric F-region produces a local modulation of the electron temperature, and the resulting pressure gradient gives rise to a diamagnetic current. The oscillations of the diamagnetic current excite hydromagnetic waves in the ELF range that propagate away from the heated region. The generation of the waves in the 2 - 10 Hz range by a modulated heating in the midlatitude ionosphere is studied using numerical simulations of a collisional Hall-magnetohydrodynamic model. To model the plasma processes in the midlatitude ionosphere the Earth's dipole magnetic field and typical ionospheric plasma parameters are used. As the hydromagnetic waves propagate away from the heated region in the F-region, the varying plasma conditions lead to changes in their characteristics. Magnetosonic waves generated in the heating region and propagating down to the E-region, where the Hall conductivity is dominant, excite oscillating Hall currents that produce shear Alfvén waves propagating along the field lines into the magnetosphere, where they propagate as the electromagnetic ion cyclotron (EMIC) and whistler waves. The EMIC waves propagate to the ion cyclotron resonance layer in the magnetosphere, where they are absorbed.
Original languageEnglish
Pages (from-to)962-971
Number of pages10
JournalRadio Science
Volume51
Issue number7
Early online date14 Jul 2016
DOIs
Publication statusPublished - 14 Jul 2016

Keywords

  • mid-latitude ionosphere
  • ELF waves
  • ionospheric heating

Fingerprint Dive into the research topics of 'Generation of ELF waves during HF heating of the ionosphere at midlatitudes'. Together they form a unique fingerprint.

Cite this