TY - JOUR
T1 - Gallium nitride micro-light-emitting diode structured light sources for multi-modal optical wireless communications systems
AU - Griffiths, A. D.
AU - Herrnsdorf, J.
AU - McKendry, J. J. D.
AU - Strain, M. J.
AU - Dawson, M. D.
AU - Islim, Mohamed Sufyan
PY - 2020/3/2
Y1 - 2020/3/2
N2 - Gallium nitride-based light-emitting diodes (LEDs) have revolutionized the lighting industry with their efficient generation of blue and green light. While broad-area (square millimetre) devices have become the dominant LED lighting technology, fabricating LEDs into micro-scale pixels (micro-LEDs) yields further advantages for optical wireless communications (OWC), and for the development of smart-lighting applications such as tracking and imaging. The smaller active areas of micro-LEDs result in high current density operation, providing high modulation bandwidths and increased optical power density. Fabricating micro-LEDs in array formats allows device layouts to be tailored for target applications and provides additional degrees of freedom for OWC systems. Temporal and spatial control is crucial to use the full potential of these micro-scale sources, and is achieved by bonding arrays to pitch-matched complementary metal-oxide-semiconductor control electronics. These compact, integrated chips operate as digital-to-light converters, providing optical signals from digital inputs. Applying the devices as projection systems allows structured light patterns to be used for tracking and self-location, while simultaneously providing space-division multiple access communication links. The high-speed nature of micro-LED array devices, combined with spatial and temporal control, allows many modes of operation for OWC providing complex functionality with chip-scale devices.
AB - Gallium nitride-based light-emitting diodes (LEDs) have revolutionized the lighting industry with their efficient generation of blue and green light. While broad-area (square millimetre) devices have become the dominant LED lighting technology, fabricating LEDs into micro-scale pixels (micro-LEDs) yields further advantages for optical wireless communications (OWC), and for the development of smart-lighting applications such as tracking and imaging. The smaller active areas of micro-LEDs result in high current density operation, providing high modulation bandwidths and increased optical power density. Fabricating micro-LEDs in array formats allows device layouts to be tailored for target applications and provides additional degrees of freedom for OWC systems. Temporal and spatial control is crucial to use the full potential of these micro-scale sources, and is achieved by bonding arrays to pitch-matched complementary metal-oxide-semiconductor control electronics. These compact, integrated chips operate as digital-to-light converters, providing optical signals from digital inputs. Applying the devices as projection systems allows structured light patterns to be used for tracking and self-location, while simultaneously providing space-division multiple access communication links. The high-speed nature of micro-LED array devices, combined with spatial and temporal control, allows many modes of operation for OWC providing complex functionality with chip-scale devices.
KW - gallium nitride
KW - micro-LEDs
KW - optical wireless communications
KW - structured light
UR - https://royalsocietypublishing.org/journal/rsta
U2 - 10.1098/rsta.2019.0185
DO - 10.1098/rsta.2019.0185
M3 - Article
SN - 1364-503X
VL - 378
JO - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
JF - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
IS - 2169
ER -