TY - JOUR
T1 - Fully decentralized cooperative navigation for spacecraft constellations
AU - Qin, Tong
AU - Macdonald, Malcolm
AU - Qiao, Dong
N1 - © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2021/8/31
Y1 - 2021/8/31
N2 - This article proposes a method to decentralize the navigation burden and improve the fault tolerance for a spacecraft constellation. The constellation body reference system is introduced, which is the perifocal frame of one satellite in the constellation. The structure of the proposed navigation method is constructed to enable each spacecraft to estimate its own orbit in this body reference system. This step is essentially the relative orbit determination (OD) based on inter-satellite range measurements. Thereafter, the approach to transfer an orbit from the constellation body reference system to an inertial reference system is developed. The essential requirements on absolute measurements to realize the coordinate transfer are presented. By dividing the absolute OD into relative OD and coordinate transfer, each navigation subsystem operated in a spacecraft can be independent with others, and the absolute measurements collected by any spacecraft can contribute to the absolute OD of the whole constellation. The proposed method applies to constellations in any geometric configuration. A Walker constellation is taken as an example for numerical simulations. The results show that the proposed method has a lower computation burden compared to an integrated navigation system. With the same type of absolute measurements, the proposed method has higher accuracy and convergence velocity than conventional decentralized algorithms. When a spacecraft occurs with fault, the orbit results of other spacecraft are not affected using the proposed method, which is beyond the ability of conventional methods.
AB - This article proposes a method to decentralize the navigation burden and improve the fault tolerance for a spacecraft constellation. The constellation body reference system is introduced, which is the perifocal frame of one satellite in the constellation. The structure of the proposed navigation method is constructed to enable each spacecraft to estimate its own orbit in this body reference system. This step is essentially the relative orbit determination (OD) based on inter-satellite range measurements. Thereafter, the approach to transfer an orbit from the constellation body reference system to an inertial reference system is developed. The essential requirements on absolute measurements to realize the coordinate transfer are presented. By dividing the absolute OD into relative OD and coordinate transfer, each navigation subsystem operated in a spacecraft can be independent with others, and the absolute measurements collected by any spacecraft can contribute to the absolute OD of the whole constellation. The proposed method applies to constellations in any geometric configuration. A Walker constellation is taken as an example for numerical simulations. The results show that the proposed method has a lower computation burden compared to an integrated navigation system. With the same type of absolute measurements, the proposed method has higher accuracy and convergence velocity than conventional decentralized algorithms. When a spacecraft occurs with fault, the orbit results of other spacecraft are not affected using the proposed method, which is beyond the ability of conventional methods.
KW - spacecraft constellation
KW - coordinated navigation
KW - decentralized navigation
KW - relative orbit determination
KW - absolute orbit determination
UR - https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7
U2 - 10.1109/TAES.2021.3060734
DO - 10.1109/TAES.2021.3060734
M3 - Article
SN - 0018-9251
VL - 57
SP - 2383
EP - 2394
JO - IEEE Transactions on Aerospace and Electronic Systems
JF - IEEE Transactions on Aerospace and Electronic Systems
IS - 4
ER -