Abstract
Fracture behaviours of orthotropic plates are studied by using ordinary state-based peridynamic (OSPD) theory. Based on OSPD, a novel nonlocal formulation of interaction integral is proposed by considering the material orthogonality for the fracture parameter evaluation. By employing peridynamic differential operator, the partial differential terms in the formulation can be transformed into corresponding spatial integral form, which contributes to the calculations of stress intensity factors within the framework of OSPD. It has built up a relationship between classical theory and peridynamic theory. Static and dynamic fracture parameters are carefully evaluated. The crack propagation directions are predicted by prototype microelastic brittle (PMB) criterion in OSPD and maximum circumferential stress (MCS) criterion in classical theory. Several pre-cracked plates with orthotropic material are examined, and results are validated by comparing against the reference solutions. The relationship between fiber orientation and crack inclined angle are also examined. Meanwhile, the crack inclination determined by PMB criterion and MCS criterion are compared and discussed. Accuracy of the peridynamic orthotropic model and proposed nonlocal interaction integral are discussed in detail.
Original language | English |
---|---|
Article number | 117757 |
Number of pages | 36 |
Journal | Composite Structures |
Volume | 329 |
Early online date | 1 Dec 2023 |
DOIs | |
Publication status | Published - 1 Feb 2024 |
Keywords
- orthotropic materials
- peridynamics
- fracture analysis
- stress intensity factors
- crack growth prediction