TY - JOUR
T1 - Formation and protein binding of the acyl glucuronide of a leukotriene b4 antagonist (sb-209247) relation to species differences in hepatotoxicity
AU - Kenny, J.R.
AU - Maggs, J.L.
AU - Tettey, J.N.A.
AU - Harrell, A.W.
AU - Parker, S.G.
AU - Clarke, S.E.
AU - Park, B.K.
PY - 2005
Y1 - 2005
N2 - SB-209247 [(E)-3-[6-[[(2,6-dichlorophenyl)-thio]methyl]-3-(2-phenylethoxy)-2-pyridinyl]-2-propenoic acid], an anti-inflammatory leukotriene B4 receptor antagonist, was associated in beagle dogs but not male rats with an inflammatory hepatopathy. It also produced a concentration-dependent (10-1000 μM) but equal leakage of enzymes from dog and rat precision-cut liver slices. The hepatic metabolism of SB-209247 was investigated with reference to the formation of reactive acyl glucuronides. [14C]SB-209247 (100 μmol/kg) administered i.v. to anesthetized male rats was eliminated by biliary excretion of the acyl glucuronides of the drug and its sulfoxide. After 5 h, 1.03 ± 0.14% (mean ± S.E.M., n = 4) of the dose was bound irreversibly to liver tissue. The sulfoxide glucuronide underwent pH-dependent rearrangement in bile more rapidly than did the SB-209247 conjugate. [14C]SB-209247 was metabolized by sulfoxidation and glucuronidation in rat and dog hepatocytes, and approximately 1 to 2% of [14C]SB-209247 (100 μM) became irreversibly bound to cellular material. [14C]SB-209247 sulfoxide and glucuronide were the only metabolites produced by dog, rat, and human liver microsomes in the presence of NADPH and UDP-glucuronic acid (UDPGA), respectively. Vmax values for [14C]SB-209247 glucuronidation by dog, rat, and human microsomes were 2.6 ± 0.1, 1.2 ± 0.1, and 0.4 ± 0.0 nmol/min/mg protein, respectively. Hepatic microsomes from all three species catalyzed UDPGA-dependent but not NADPH-dependent irreversible binding of [14C]SB-209247 (100-250 μM) to microsomal protein. Although a reactive acyl glucuronide was formed by microsomes from every species, the binding did not differ between species. Therefore, neither the acute cellular injury nor glucuronidation-driven irreversible protein binding in vitro is predictive of the drug-induced hepatopathy.
AB - SB-209247 [(E)-3-[6-[[(2,6-dichlorophenyl)-thio]methyl]-3-(2-phenylethoxy)-2-pyridinyl]-2-propenoic acid], an anti-inflammatory leukotriene B4 receptor antagonist, was associated in beagle dogs but not male rats with an inflammatory hepatopathy. It also produced a concentration-dependent (10-1000 μM) but equal leakage of enzymes from dog and rat precision-cut liver slices. The hepatic metabolism of SB-209247 was investigated with reference to the formation of reactive acyl glucuronides. [14C]SB-209247 (100 μmol/kg) administered i.v. to anesthetized male rats was eliminated by biliary excretion of the acyl glucuronides of the drug and its sulfoxide. After 5 h, 1.03 ± 0.14% (mean ± S.E.M., n = 4) of the dose was bound irreversibly to liver tissue. The sulfoxide glucuronide underwent pH-dependent rearrangement in bile more rapidly than did the SB-209247 conjugate. [14C]SB-209247 was metabolized by sulfoxidation and glucuronidation in rat and dog hepatocytes, and approximately 1 to 2% of [14C]SB-209247 (100 μM) became irreversibly bound to cellular material. [14C]SB-209247 sulfoxide and glucuronide were the only metabolites produced by dog, rat, and human liver microsomes in the presence of NADPH and UDP-glucuronic acid (UDPGA), respectively. Vmax values for [14C]SB-209247 glucuronidation by dog, rat, and human microsomes were 2.6 ± 0.1, 1.2 ± 0.1, and 0.4 ± 0.0 nmol/min/mg protein, respectively. Hepatic microsomes from all three species catalyzed UDPGA-dependent but not NADPH-dependent irreversible binding of [14C]SB-209247 (100-250 μM) to microsomal protein. Although a reactive acyl glucuronide was formed by microsomes from every species, the binding did not differ between species. Therefore, neither the acute cellular injury nor glucuronidation-driven irreversible protein binding in vitro is predictive of the drug-induced hepatopathy.
KW - Hepatoxicity
KW - drug metabolism
UR - http://dx.doi.org/10.1124/dmd.104.001677
U2 - 10.1124/dmd.104.001677
DO - 10.1124/dmd.104.001677
M3 - Article
SN - 0090-9556
VL - 33
SP - 271
EP - 281
JO - Drug Metabolism and Disposition
JF - Drug Metabolism and Disposition
IS - 2
ER -