Abstract
We present theoretical and simulation studies of the formation and dynamics of finite-amplitude localized pulses (solitary waves) of an incompressible fluid in an elastic tube. Starting from a set of hydrodynamic equations, we derive a Hamiltonian which represents the energy integral of our system. The energy integral is analyzed to obtain explicit profiles of finite-amplitude solitary pulses. Also studied are the excitation and dynamics of solitary pulses by using computer simulations. It is found that a train of solitary pulses can be excited by the nonlinear self-steepening at shock fronts. The relevance of our investigation to blood solitary waves in arteries is discussed.
Original language | English |
---|---|
Article number | 067302 |
Number of pages | 4 |
Journal | Physical Review E |
Volume | 71 |
Issue number | 6 |
DOIs | |
Publication status | Published - 28 Jun 2005 |
Keywords
- localized pulses
- elastic tubes