Fluorescence-based glucose sensors

J.C. Pickup, Faeiza Hussain, Nicholas D. Evans, O.J. Rolinski, D.J.S. Birch

Research output: Contribution to journalArticlepeer-review

457 Citations (Scopus)


There is an urgent need to develop technology for continuous in vivo glucose monitoring in subjects with diabetes mellitus. Problems with existing devices based on electrochemistry have encouraged alternative approaches to glucose sensing in recent years, and those based on fluorescence intensity and lifetime have special advantages, including sensitivity and the potential for non-invasive measurement when near-infrared light is used. Several receptors have been employed to detect glucose in fluorescence sensors, and these include the lectin concanavalin A (Con A), enzymes such as glucose oxidase, glucose dehydrogenase and hexokinase/glucokinase, bacterial glucose-binding protein, and boronic acid derivatives (which bind the diols of sugars). Techniques include measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor either within a protein which undergoes glucose-induced changes in conformation or because of competitive displacement; measurement of glucose-induced changes in intrinsic fluorescence of enzymes (e.g. due to tryptophan residues in hexokinase) or extrinsic fluorophores (e.g. using environmentally sensitive fluorophores to signal protein conformation). Non-invasive glucose monitoring can be accomplished by measurement of cell autofluorescence due to NAD(P)H, and fluorescent markers of mitochondrial metabolism can signal changes in extracellular glucose concentration. Here we review the principles of operation, context and current status of the various approaches to fluorescence-based glucose sensing.
Original languageEnglish
Pages (from-to)2555-2565
Number of pages10
JournalBiosensors and Bioelectronics
Issue number12
Publication statusPublished - 15 Jun 2005


  • diabetes mellitus
  • biosensor
  • glucose monitoring
  • glucose sensor
  • fluorescence
  • non-invasive monitoring
  • fluorescence resonance energy transfer

Fingerprint Dive into the research topics of 'Fluorescence-based glucose sensors'. Together they form a unique fingerprint.

Cite this