Flexible mixture priors for large time-varying parameter models

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
28 Downloads (Pure)

Abstract

Time-varying parameter (TVP) models often assume that the TVPs evolve according to a random walk. This assumption, however, might be questionable since it implies that coefficients change smoothly and in an unbounded manner. This assumption is relaxed by proposing a flexible law of motion for the TVPs in large-scale vector autoregressions (VARs). Instead of imposing a restrictive random walk evolution of the latent states, hierarchical mixture priors on the coefficients in the state equation are carefully designed. These priors effectively allow for discriminating between periods in which coefficients evolve according to a random walk and times where the TVPs are better characterized by a stationary stochastic process. Moreover, this approach is capable of introducing dynamic sparsity by pushing small parameter changes towards zero if necessary. The merits of the model are illustrated by means of two applications. Using synthetic data these flexible modeling techniques yield precise parameter estimates. When applied to US data, the model reveals interesting patterns of low-frequency dynamics in coefficients and forecasts well relative to a wide range of competing models.
Original languageEnglish
Pages (from-to)87-108
Number of pages22
JournalEconometrics and Statistics
Volume20
Early online date20 Aug 2021
DOIs
Publication statusPublished - 31 Oct 2021

Keywords

  • time-varying parameter vector autoregressions
  • clustering
  • macroeconomic forecasting
  • hierarchical modeling

Fingerprint

Dive into the research topics of 'Flexible mixture priors for large time-varying parameter models'. Together they form a unique fingerprint.

Cite this