Flexible fault-tolerant topology for switched reluctance motor drives

Yihua Hu, Chun Gan, Wenping Cao, Jiangfeng Zhang, Wuhua Li, Stephen Finney

Research output: Contribution to journalArticlepeer-review

90 Citations (Scopus)
101 Downloads (Pure)


Switched reluctance motor (SRM) drives are one competitive technology for traction motor drives. This paper proposes a novel and flexible SRM fault-tolerant topology with fault diagnosis, fault tolerance and advanced control functions. The converter is composed of a single-phase bridge and a relay network, based on the traditional asymmetrical half bridge driving topology. When the SRM driving system is subjected to fault conditions including open-circuit and short circuit faults, the proposed converter starts its fault diagnosis procedure to locate the fault. Based on the relay network, the faulty part can be bypassed by the single-phase bridge arm while the single-phase bridge arm and the healthy part of the converter can form a fault-tolerant topology to sustain the driving operation. A fault-tolerant control strategy is developed to decrease the influence of the fault. Furthermore, the proposed fault tolerance strategy can be applied to three-phase 12/8 SRM and four-phase 8/6 SRM. Simulation results in Matlab/Simulink and experiments on a three-phase 12/8 SRM and a four-phase 8/6 SRM validate the effectiveness of the proposed strategy, which may have significant economic implications in traction drive systems.
Original languageEnglish
Pages (from-to)4654 - 4668
Number of pages15
JournalIEEE Transactions on Power Electronics
Issue number6
Early online date7 Sept 2015
Publication statusPublished - 30 Jun 2016


  • switched reluctance motors
  • SRM
  • fault tolerance
  • traction motor drive
  • fault diagnosis


Dive into the research topics of 'Flexible fault-tolerant topology for switched reluctance motor drives'. Together they form a unique fingerprint.

Cite this