Firm spin and parity assignments for high-lying, low-spin levels in stable Si isotopes

J. Sinclair, M. Scheck*, S. W. Finch, Krishichayan, U. Friman-Gayer, W. Tornow, G. Battaglia, T. Beck, R. Chapman, M. M. R. Chishti, Ch. Fransen, R. Gonzales, E. Hoemann, J. Isaak, R. V. F. Janssens, D. A. Jaroszynski, S. Johnson, M. D. Jones, J. M. Keatings, N. KellyJ. Kleemann, D. Little, B. Löher, K. R. Mashtakov, M. Müscher, D. O’Donnell, O. Papst, E. E. Peters, D. Savran, M. Schilling, R. Schwengner, P. Spagnoletti, M. Spieker, V. Werner, J. Wilhelmy, O. Wieland, S. W. Yates, A. Zilges

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
25 Downloads (Pure)

Abstract

A natural silicon target was investigated in a natSi(γ, γ) photon-scattering experiment with fully linearly-polarised, quasi-monochromatic γ rays in the entrance channel. The mean photon energies used were ⟨ Eγ⟩ = 9.33, 9.77, 10.17, 10.55, 10.93, and 11.37 MeV, and the relative energy spread (full width at half maximum) of the incident beam was ΔEγ/ ⟨ Eγ⟩ ≈ 3.5–4 %. The observed angular distributions for the ground-state decay allow firm spin and parity assignments for several levels of the stable even-even silicon isotopes.

Original languageEnglish
Article number105
Number of pages7
JournalEuropean Physical Journal A
Volume56
Issue number4
DOIs
Publication statusPublished - 6 Apr 2020

Keywords

  • photon-scattering
  • silicon
  • spin

Fingerprint

Dive into the research topics of 'Firm spin and parity assignments for high-lying, low-spin levels in stable Si isotopes'. Together they form a unique fingerprint.

Cite this