Finite resource performance of small satellite-based quantum key distribution missions

Tanvirul Islam, Jasminder S. Sidhu, Brendon L. Higgins, Thomas Brougham, Tom Vergoossen, Daniel K. L. Oi, Thomas Jennewein, Alexander Ling

Research output: Working paperWorking Paper/Preprint

21 Downloads (Pure)


In satellite-based quantum key distribution (QKD), the number of secret bits that can be generated in a single satellite pass over the ground station is severely restricted by the pass duration and the free-space optical channel loss. High channel loss may decrease the signal-to-noise ratio due to background noise, reduce the number of generated raw key bits, and increase the quantum bit error rate (QBER), all of which have detrimental effects on the output secret key length. Under finite-size security analysis, higher QBER increases the minimum raw key length necessary for non-zero secret key length extraction due to less efficient reconciliation and post-processing overheads. We show that recent developments in finite key analysis allow three different small-satellite-based QKD projects CQT-Sat, UK-QUARC-ROKS, and QEYSSat to produce secret keys even under very high loss conditions, improving on estimates based on previous finite key bounds. This suggests that satellites in low Earth orbit can satisfy finite-size security requirements, but remains challenging for satellites further from Earth.
Original languageEnglish
Place of PublicationIthaca, New York
Number of pages11
Publication statusPublished - 26 Apr 2022


  • quantum key distribution
  • security analysis
  • satellite
  • low Earth orbit


Dive into the research topics of 'Finite resource performance of small satellite-based quantum key distribution missions'. Together they form a unique fingerprint.

Cite this