TY - JOUR
T1 - Fast electron propagation in high-density plasmas created by 1D shock wave compression
T2 - experiments and simulations
AU - Santos, J. J.
AU - Batani, D.
AU - McKenna, P.
AU - Baton, S. D.
AU - Dorchies, F.
AU - Dubrouil, A.
AU - Fourment, C.
AU - Hulin, S.
AU - D'Humières, E.
AU - Nicolaï, H.
AU - Gremillet, L.
AU - Debayle, A.
AU - Honrubia, J. J.
AU - Carpeggiani, P.
AU - Veltcheva, M.
AU - Quinn, M. N.
AU - Brambrink, E.
AU - Tikhonchuk, V.
N1 - Deposited under CC-BY 3.0 with permission of IOP Publishing Ltd.
PY - 2010/1/1
Y1 - 2010/1/1
N2 - We present results from an experimental characterization of fast electron transport in high density plasmas created by 1D shock wave compression. The Kα fluorescence from a Cu layer embedded in Al or CH foil targets is measured. We use long laser pulses (LP) with 180 J, 1.5 ns, 0.53μm to compress the foils by shock wave propagation to 2-3 times their solid density and heat them to ∼ 4eV (close to the Fermi temperature). A counter-propagating high-intensity short laser pulse (SP), with 40 J, 1 ps, 57×1019 Wcm-2, generates intense currents of fast electrons which propagate through the deep regions of the target just before shock breakthrough. The results are compared to the uncompressed, solid density case (without the LP beam). The complete set of measurements is compared to numerical results, including a 2D hydrodynamic description of the compression and pre-pulse effects, 2D PIC simulations of the SP beam interaction and both hybrid and PIC simulations of the electron transport in the target depth and sheaths. In the case of the non-compressed targets we need to take fast electron refluxing into account to reproduce the experimental results. By exploring the domain of warm temperatures, we identify a regime for the incident fast electron current density, 1010 < jh < 1012 Acm-2, for which the collective mechanisms of electron transport differs appreciably between solid density and compressed matter.
AB - We present results from an experimental characterization of fast electron transport in high density plasmas created by 1D shock wave compression. The Kα fluorescence from a Cu layer embedded in Al or CH foil targets is measured. We use long laser pulses (LP) with 180 J, 1.5 ns, 0.53μm to compress the foils by shock wave propagation to 2-3 times their solid density and heat them to ∼ 4eV (close to the Fermi temperature). A counter-propagating high-intensity short laser pulse (SP), with 40 J, 1 ps, 57×1019 Wcm-2, generates intense currents of fast electrons which propagate through the deep regions of the target just before shock breakthrough. The results are compared to the uncompressed, solid density case (without the LP beam). The complete set of measurements is compared to numerical results, including a 2D hydrodynamic description of the compression and pre-pulse effects, 2D PIC simulations of the SP beam interaction and both hybrid and PIC simulations of the electron transport in the target depth and sheaths. In the case of the non-compressed targets we need to take fast electron refluxing into account to reproduce the experimental results. By exploring the domain of warm temperatures, we identify a regime for the incident fast electron current density, 1010 < jh < 1012 Acm-2, for which the collective mechanisms of electron transport differs appreciably between solid density and compressed matter.
KW - high density plasmas
KW - 1D shock wave compression
KW - inertial confinement fusion
KW - fast electrons
U2 - 10.1088/1742-6596/244/2/022060
DO - 10.1088/1742-6596/244/2/022060
M3 - Article
AN - SCOPUS:78651323114
SN - 1742-6588
VL - 244
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - PART 2
M1 - 022060
ER -