Factors governing the formation of porosity in metal loaded cellulose during pyrolysis and the effects of pore structure on reactivity in o-2 and no

W. Ruiz, D. Gascon, P.J. Hall

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

A series of carbons have been made from cellulose that has been loaded with varying amounts of calcium, potassium and iron. Small angle X-ray scattering showed that the calcium-loaded chars produced carbons with mass fractal properties whereas potassium loaded chars produce carbons with surface fractal properties in the mesopore region. Calcium loaded chars were more microporous than potassium loaded chars. Iron loaded cellulose produced a Small Angle X-Ray Scattering (SAXS) pattern with two linear regions. The high q-scattering was characteristic of a highly microporous material. Differences in carbon properties were attributed to crosslinking reactions induced by the metals during pyrolysis. The reactivity of the carbons in O-2 and NO was determined and the ratio of the reactivities, R(NO)/R(O-2) noted. It was found that the presence of calcium and potassium both decreased R(NO)/R(O-2), but iron increased R(NO)/R(O-2) for a certain loading range. The latter was attributed to the reduced catalytic activity of iron for O-2 gasification and the pore structure of the iron loaded carbons.
Original languageEnglish
Pages (from-to)1565-1571
Number of pages6
JournalFuel
Volume79
Issue number13
DOIs
Publication statusPublished - Oct 2000

Keywords

  • metal loaded cellulose during pyrolysis
  • porosity
  • reactivity in O-2 and NO

Fingerprint

Dive into the research topics of 'Factors governing the formation of porosity in metal loaded cellulose during pyrolysis and the effects of pore structure on reactivity in o-2 and no'. Together they form a unique fingerprint.

Cite this