Experimental investigation of nonlinear forces on a monopile offshore wind turbine foundation under directionally spread waves

Haoyu Ding, Guangwei Zhao, Tianning Tang, Paul Taylor, Thomas A.A Adcock, Saishuai Dai, DeZhi Ning, Lifen Chen, Jinxuan Li, Rongquan Wang, Jun Zang

Research output: Contribution to journalArticlepeer-review

Abstract

Accurate prediction of nonlinear wave loading is crucial for designing marine and offshore structures, yet it remains a challenging task. Prior research has primarily focused on unidirectional extreme sea states, revealing that linear loading cannot accurately represent the total wave forces acting on offshore wind turbine foundations, with significant contributions from high-order harmonics. This study broadens the scope to include multidirectional and bidirectional wave interactions with monopile offshore wind turbine foundations. We use a phase-based harmonic separation method to isolate harmonic components in the presence of complex wave scenarios. This approach allows for the clear delineation of individual harmonics from the total wave force by controlling the phase of incident-focused waves. Remarkably, this method is effective even with multidirectional and bidirectional spreading. The clean separation of individual harmonics enables the estimation of contributions from each harmonic. Our findings are in line with previous research, showing that nonlinear loading can constitute up to 40% of the total under certain wave conditions. We have also observed that wider wave spreading reduces nonlinear high-order harmonics, and unidirectional waves induce the most severe nonlinear forces. These insights emphasize the importance of accounting for high-order nonlinear wave loading in offshore structure design.
Original languageEnglish
Article numberOMAE-24-1118
Pages (from-to)1-9
Number of pages9
JournalJournal of Offshore Mechanics and Arctic Engineering
Volume147
Issue number4
Early online date11 Nov 2024
DOIs
Publication statusE-pub ahead of print - 11 Nov 2024

Keywords

  • fluid-structure interaction
  • hydrodynamics
  • wave mechanics and wave effects

Fingerprint

Dive into the research topics of 'Experimental investigation of nonlinear forces on a monopile offshore wind turbine foundation under directionally spread waves'. Together they form a unique fingerprint.

Cite this