Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam

J. M. Cole, K. T. Behm, E. Gerstmayr, T. G. Blackburn, J. C. Wood, C. D. Baird, M. J. Duff, C. Harvey, A. Ilderton, A. S. Joglekar, K. Krushelnick, S. Kuschel, M. Marklund, P. McKenna, C. D. Murphy, K. Poder, C. P. Ridgers, G. M. Samarin, G. Sarri, D. Symes & 5 others A. G. R. Thomas, J. Warwick, M. Zepf, Z. Najmudin, S. P. D. Mangles

Research output: Contribution to journalArticle

80 Citations (Scopus)

Abstract

The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today’s lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ϵ>500  MeV) with an intense laser pulse (a0>10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ϵcrit>30  MeV.
LanguageEnglish
Article number011020
Number of pages11
JournalPhysical Review X
Volume8
Issue number1
DOIs
Publication statusPublished - 7 Feb 2018

Fingerprint

high power lasers
electron beams
collisions
radiation
pulses
lasers
energy dissipation
gamma rays
energetic particles
high energy electrons
electromagnetic fields
energy
photons
scattering
electrons

Keywords

  • plasma physics
  • radiation reactions
  • ultra-intense lasers
  • electrodynamics
  • laser-wakefield acceleration
  • laser pulse

Cite this

Cole, J. M., Behm, K. T., Gerstmayr, E., Blackburn, T. G., Wood, J. C., Baird, C. D., ... Mangles, S. P. D. (2018). Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. Physical Review X, 8(1), [011020]. https://doi.org/10.1103/PhysRevX.8.011020
Cole, J. M. ; Behm, K. T. ; Gerstmayr, E. ; Blackburn, T. G. ; Wood, J. C. ; Baird, C. D. ; Duff, M. J. ; Harvey, C. ; Ilderton, A. ; Joglekar, A. S. ; Krushelnick, K. ; Kuschel, S. ; Marklund, M. ; McKenna, P. ; Murphy, C. D. ; Poder, K. ; Ridgers, C. P. ; Samarin, G. M. ; Sarri, G. ; Symes, D. ; Thomas, A. G. R. ; Warwick, J. ; Zepf, M. ; Najmudin, Z. ; Mangles, S. P. D. / Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. In: Physical Review X. 2018 ; Vol. 8, No. 1.
@article{e2dd11d7ec4640b1928e669b065b6ecf,
title = "Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam",
abstract = "The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today’s lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ϵ>500  MeV) with an intense laser pulse (a0>10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ϵcrit>30  MeV.",
keywords = "plasma physics, radiation reactions, ultra-intense lasers, electrodynamics, laser-wakefield acceleration, laser pulse",
author = "Cole, {J. M.} and Behm, {K. T.} and E. Gerstmayr and Blackburn, {T. G.} and Wood, {J. C.} and Baird, {C. D.} and Duff, {M. J.} and C. Harvey and A. Ilderton and Joglekar, {A. S.} and K. Krushelnick and S. Kuschel and M. Marklund and P. McKenna and Murphy, {C. D.} and K. Poder and Ridgers, {C. P.} and Samarin, {G. M.} and G. Sarri and D. Symes and Thomas, {A. G. R.} and J. Warwick and M. Zepf and Z. Najmudin and Mangles, {S. P. D.}",
year = "2018",
month = "2",
day = "7",
doi = "10.1103/PhysRevX.8.011020",
language = "English",
volume = "8",
journal = "Physical Review X",
issn = "2160-3308",
number = "1",

}

Cole, JM, Behm, KT, Gerstmayr, E, Blackburn, TG, Wood, JC, Baird, CD, Duff, MJ, Harvey, C, Ilderton, A, Joglekar, AS, Krushelnick, K, Kuschel, S, Marklund, M, McKenna, P, Murphy, CD, Poder, K, Ridgers, CP, Samarin, GM, Sarri, G, Symes, D, Thomas, AGR, Warwick, J, Zepf, M, Najmudin, Z & Mangles, SPD 2018, 'Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam' Physical Review X, vol. 8, no. 1, 011020. https://doi.org/10.1103/PhysRevX.8.011020

Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. / Cole, J. M.; Behm, K. T.; Gerstmayr, E.; Blackburn, T. G.; Wood, J. C.; Baird, C. D.; Duff, M. J.; Harvey, C.; Ilderton, A.; Joglekar, A. S.; Krushelnick, K.; Kuschel, S.; Marklund, M.; McKenna, P.; Murphy, C. D.; Poder, K.; Ridgers, C. P.; Samarin, G. M.; Sarri, G.; Symes, D.; Thomas, A. G. R.; Warwick, J.; Zepf, M.; Najmudin, Z.; Mangles, S. P. D.

In: Physical Review X, Vol. 8, No. 1, 011020, 07.02.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam

AU - Cole, J. M.

AU - Behm, K. T.

AU - Gerstmayr, E.

AU - Blackburn, T. G.

AU - Wood, J. C.

AU - Baird, C. D.

AU - Duff, M. J.

AU - Harvey, C.

AU - Ilderton, A.

AU - Joglekar, A. S.

AU - Krushelnick, K.

AU - Kuschel, S.

AU - Marklund, M.

AU - McKenna, P.

AU - Murphy, C. D.

AU - Poder, K.

AU - Ridgers, C. P.

AU - Samarin, G. M.

AU - Sarri, G.

AU - Symes, D.

AU - Thomas, A. G. R.

AU - Warwick, J.

AU - Zepf, M.

AU - Najmudin, Z.

AU - Mangles, S. P. D.

PY - 2018/2/7

Y1 - 2018/2/7

N2 - The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today’s lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ϵ>500  MeV) with an intense laser pulse (a0>10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ϵcrit>30  MeV.

AB - The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today’s lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ϵ>500  MeV) with an intense laser pulse (a0>10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ϵcrit>30  MeV.

KW - plasma physics

KW - radiation reactions

KW - ultra-intense lasers

KW - electrodynamics

KW - laser-wakefield acceleration

KW - laser pulse

UR - https://journals.aps.org/prx/

U2 - 10.1103/PhysRevX.8.011020

DO - 10.1103/PhysRevX.8.011020

M3 - Article

VL - 8

JO - Physical Review X

T2 - Physical Review X

JF - Physical Review X

SN - 2160-3308

IS - 1

M1 - 011020

ER -