Experimental and theoretical investigations of the redox behavior of the heterodichalcogenido ligands [((EPPr2)-Pr-i)((TePPr2)-Pr-i)N](-) (E = S, Se): cyclic cations and acyclic dichalcogenide dimers

Stuart D. Robertson, Tristram Chivers, Heikki M. Tuononen

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

The two-electron oxidation of the lithium salts of the heterodichalcogenidoimidodiphosphinate anions [((EPPr2)-Pr-i)((TePPr2)-Pr-i)N](-) (1a, E = S; 1b, E = Se) with iodine yields cyclic cations [((EPPr2)-Pr-i)((TePPr2)-Pr-i)N](+) as their iodide salts [((SPPr2)-Pr-i)((TePPr2)-Pr-i)N]l (2a) and [((SePPr2)-Pr-i)((TePPr2)-Pr-i)N]l (2b). The five-membered rings in 2a and 2b both display an elongated E-Te bond as a consequence of an interaction between tellurium and the iodide anion. One-electron reduction of 2a and 2b with cobaltocene produces the neutral dimers ((EPPr2NPPr2Te)-Pr-i-Pr-i-)(2) (3a, E = S; 3b, E = Se), which are connected exclusively through a Te-Te bond. Two-electron reduction of 2a and 2b with 2 equiv of cobaltocene regenerates the corresponding dichalcogenidoimidodiphosphinate anions as ion-separated cobaltocenium salts Cp2Co[((EPPr2)-Pr-i)((TePPr2)-Pr-i)N] (4a, E = S; 4b, E = Se). The ditellurido analogue Cp2Co[((TePPr2)-Pr-i)(2)N] (4c) has been prepared in the same manner for comparison. Density functional theory calculations reveal that the preferential interaction of the iodide anion with tellurium is determined by the polarization of the lowest unoccupied molecular orbital [(sigma*(E-Te)] of the cations in 2a and 2b toward tellurium and that the formation of the dimers 3a and 3b with a central Te-Te linkage is energetically more favorable than the structural isomers with either E-Te or E-E bonds. Compounds 2a, 2b, 3a, 3b, 4a, 4b, and 4c have been characterized in solution by multinuclear NMR spectroscopy and in the solid state by X-ray crystallography.

LanguageEnglish
Pages10634-10643
Number of pages10
JournalInorganic Chemistry
Volume47
Issue number22
Early online date10 Oct 2008
DOIs
Publication statusPublished - 17 Nov 2008

Fingerprint

Tellurium
Dimers
Anions
Cations
Iodides
tellurium
dimers
iodides
anions
Ligands
cations
ligands
Salts
salts
Electrons
electrons
X ray crystallography
Molecular orbitals
Lithium
linkages

Keywords

  • single-source-precursors
  • chemical-vapor-deposition
  • X-ray structures
  • imino-bis(diisopropylphosphine chalcogenide) complexes
  • thin-films
  • coordination chemistry
  • crystal-structure
  • metal-complexes
  • ring-systems
  • tellurium

Cite this

@article{9254812d3a1a4078a61289d2f8a2eee2,
title = "Experimental and theoretical investigations of the redox behavior of the heterodichalcogenido ligands [((EPPr2)-Pr-i)((TePPr2)-Pr-i)N](-) (E = S, Se): cyclic cations and acyclic dichalcogenide dimers",
abstract = "The two-electron oxidation of the lithium salts of the heterodichalcogenidoimidodiphosphinate anions [((EPPr2)-Pr-i)((TePPr2)-Pr-i)N](-) (1a, E = S; 1b, E = Se) with iodine yields cyclic cations [((EPPr2)-Pr-i)((TePPr2)-Pr-i)N](+) as their iodide salts [((SPPr2)-Pr-i)((TePPr2)-Pr-i)N]l (2a) and [((SePPr2)-Pr-i)((TePPr2)-Pr-i)N]l (2b). The five-membered rings in 2a and 2b both display an elongated E-Te bond as a consequence of an interaction between tellurium and the iodide anion. One-electron reduction of 2a and 2b with cobaltocene produces the neutral dimers ((EPPr2NPPr2Te)-Pr-i-Pr-i-)(2) (3a, E = S; 3b, E = Se), which are connected exclusively through a Te-Te bond. Two-electron reduction of 2a and 2b with 2 equiv of cobaltocene regenerates the corresponding dichalcogenidoimidodiphosphinate anions as ion-separated cobaltocenium salts Cp2Co[((EPPr2)-Pr-i)((TePPr2)-Pr-i)N] (4a, E = S; 4b, E = Se). The ditellurido analogue Cp2Co[((TePPr2)-Pr-i)(2)N] (4c) has been prepared in the same manner for comparison. Density functional theory calculations reveal that the preferential interaction of the iodide anion with tellurium is determined by the polarization of the lowest unoccupied molecular orbital [(sigma*(E-Te)] of the cations in 2a and 2b toward tellurium and that the formation of the dimers 3a and 3b with a central Te-Te linkage is energetically more favorable than the structural isomers with either E-Te or E-E bonds. Compounds 2a, 2b, 3a, 3b, 4a, 4b, and 4c have been characterized in solution by multinuclear NMR spectroscopy and in the solid state by X-ray crystallography.",
keywords = "single-source-precursors, chemical-vapor-deposition, X-ray structures, imino-bis(diisopropylphosphine chalcogenide) complexes, thin-films, coordination chemistry, crystal-structure, metal-complexes, ring-systems, tellurium",
author = "Robertson, {Stuart D.} and Tristram Chivers and Tuononen, {Heikki M.}",
year = "2008",
month = "11",
day = "17",
doi = "10.1021/ic801384c",
language = "English",
volume = "47",
pages = "10634--10643",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "22",

}

TY - JOUR

T1 - Experimental and theoretical investigations of the redox behavior of the heterodichalcogenido ligands [((EPPr2)-Pr-i)((TePPr2)-Pr-i)N](-) (E = S, Se)

T2 - Inorganic Chemistry

AU - Robertson, Stuart D.

AU - Chivers, Tristram

AU - Tuononen, Heikki M.

PY - 2008/11/17

Y1 - 2008/11/17

N2 - The two-electron oxidation of the lithium salts of the heterodichalcogenidoimidodiphosphinate anions [((EPPr2)-Pr-i)((TePPr2)-Pr-i)N](-) (1a, E = S; 1b, E = Se) with iodine yields cyclic cations [((EPPr2)-Pr-i)((TePPr2)-Pr-i)N](+) as their iodide salts [((SPPr2)-Pr-i)((TePPr2)-Pr-i)N]l (2a) and [((SePPr2)-Pr-i)((TePPr2)-Pr-i)N]l (2b). The five-membered rings in 2a and 2b both display an elongated E-Te bond as a consequence of an interaction between tellurium and the iodide anion. One-electron reduction of 2a and 2b with cobaltocene produces the neutral dimers ((EPPr2NPPr2Te)-Pr-i-Pr-i-)(2) (3a, E = S; 3b, E = Se), which are connected exclusively through a Te-Te bond. Two-electron reduction of 2a and 2b with 2 equiv of cobaltocene regenerates the corresponding dichalcogenidoimidodiphosphinate anions as ion-separated cobaltocenium salts Cp2Co[((EPPr2)-Pr-i)((TePPr2)-Pr-i)N] (4a, E = S; 4b, E = Se). The ditellurido analogue Cp2Co[((TePPr2)-Pr-i)(2)N] (4c) has been prepared in the same manner for comparison. Density functional theory calculations reveal that the preferential interaction of the iodide anion with tellurium is determined by the polarization of the lowest unoccupied molecular orbital [(sigma*(E-Te)] of the cations in 2a and 2b toward tellurium and that the formation of the dimers 3a and 3b with a central Te-Te linkage is energetically more favorable than the structural isomers with either E-Te or E-E bonds. Compounds 2a, 2b, 3a, 3b, 4a, 4b, and 4c have been characterized in solution by multinuclear NMR spectroscopy and in the solid state by X-ray crystallography.

AB - The two-electron oxidation of the lithium salts of the heterodichalcogenidoimidodiphosphinate anions [((EPPr2)-Pr-i)((TePPr2)-Pr-i)N](-) (1a, E = S; 1b, E = Se) with iodine yields cyclic cations [((EPPr2)-Pr-i)((TePPr2)-Pr-i)N](+) as their iodide salts [((SPPr2)-Pr-i)((TePPr2)-Pr-i)N]l (2a) and [((SePPr2)-Pr-i)((TePPr2)-Pr-i)N]l (2b). The five-membered rings in 2a and 2b both display an elongated E-Te bond as a consequence of an interaction between tellurium and the iodide anion. One-electron reduction of 2a and 2b with cobaltocene produces the neutral dimers ((EPPr2NPPr2Te)-Pr-i-Pr-i-)(2) (3a, E = S; 3b, E = Se), which are connected exclusively through a Te-Te bond. Two-electron reduction of 2a and 2b with 2 equiv of cobaltocene regenerates the corresponding dichalcogenidoimidodiphosphinate anions as ion-separated cobaltocenium salts Cp2Co[((EPPr2)-Pr-i)((TePPr2)-Pr-i)N] (4a, E = S; 4b, E = Se). The ditellurido analogue Cp2Co[((TePPr2)-Pr-i)(2)N] (4c) has been prepared in the same manner for comparison. Density functional theory calculations reveal that the preferential interaction of the iodide anion with tellurium is determined by the polarization of the lowest unoccupied molecular orbital [(sigma*(E-Te)] of the cations in 2a and 2b toward tellurium and that the formation of the dimers 3a and 3b with a central Te-Te linkage is energetically more favorable than the structural isomers with either E-Te or E-E bonds. Compounds 2a, 2b, 3a, 3b, 4a, 4b, and 4c have been characterized in solution by multinuclear NMR spectroscopy and in the solid state by X-ray crystallography.

KW - single-source-precursors

KW - chemical-vapor-deposition

KW - X-ray structures

KW - imino-bis(diisopropylphosphine chalcogenide) complexes

KW - thin-films

KW - coordination chemistry

KW - crystal-structure

KW - metal-complexes

KW - ring-systems

KW - tellurium

U2 - 10.1021/ic801384c

DO - 10.1021/ic801384c

M3 - Article

VL - 47

SP - 10634

EP - 10643

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 22

ER -