Abstract
Room-temperature nonaqueous synthetic routes turn out to be particularly competitive among all the available liquid-phase synthetic methods for nanometer-sized metal oxides for multiple applications. Microplasma-assisted anodization is employed to prepare soluble and crystalline Mo species in a water-deficient and extraneous ionic-salt-free ethanol electrolyte. The anodization of Mo in absolute ethanol is found to produce Mo oxyethoxide in the liquid ethanol phase, along with a small montage of mixed hexagonal and orthorhombic MoO3 crystals. The evolution of Mo species in solid and liquid phases is characterized to study the crystallization of MoO3 crystal and the formation of blue spherical Mo polyoxometalates (POMs) after extended aging. The addition of water in the suspension delayed the formation of molybdenum blue while hydrogen peroxide induced the precipitation of a dendritic framework of hexagonal MoO3. A thin MoO3 film was produced from the solution and can be used for humidity sensing by the facile conductivity measurement.
Original language | English |
---|---|
Pages (from-to) | 5249–5257 |
Journal | Crystal Growth and Design |
Volume | 19 |
Issue number | 9 |
DOIs | |
Publication status | Published - 9 Aug 2019 |
Keywords
- anodization
- electrodes
- ethanol
- humidity
- suspension