Evaluation of non-intrusive load monitoring algorithms for appliance-level anomaly detection

Haroon Rashid, Vladimir Stankovic, Lina Stankovic, Pushpendra Singh

Research output: Contribution to conferencePaper

90 Downloads (Pure)

Abstract

Appliance faults in buildings resulting in abnormal energy consumption is known as an anomaly. Traditionally, anomaly detection is performed either at aggregate, i.e., meter-level, or at appliance level. Meter-level anomaly detection does not identify the anomaly-causing appliance, while appliance-level detection requires submetering each appliance in the building. Non-Intrusive Load Monitoring (NILM) has been proposed as an alternative to submetering to detect when appliances are running as well as estimate the appliance energy consumption. So far, applications have revolved around meaningful energy feedback. In this paper, we assess whether NILM can indeed be used for anomaly detection, as an alternative to submetering. We propose a supervised anomaly detection approach, AEM, and evaluate the effectiveness of NILM for anomaly detection. The proposed approach first learns an appliance's normal operation and then monitors its energy consumption for anomaly detection. We resort to real data, aggregate and submetered data from the two-year long REFIT dataset. We explain why anomaly detection performs worse with NILM data as compared to submetered data, highlighting the need for new, anomaly-aware NILM approaches.
Original languageEnglish
Number of pages5
Publication statusAccepted/In press - 1 Feb 2019
Event2019 IEEE International Conference on Acoustics, Speech, and Signal Processing - Brighton Conference Centre, Brighton, United Kingdom
Duration: 12 May 201917 May 2019
https://2019.ieeeicassp.org/

Conference

Conference2019 IEEE International Conference on Acoustics, Speech, and Signal Processing
Abbreviated titleICASSP
CountryUnited Kingdom
CityBrighton
Period12/05/1917/05/19
Internet address

Keywords

  • NILM
  • energy disaggregation
  • anomaly detection
  • smart metering

Fingerprint Dive into the research topics of 'Evaluation of non-intrusive load monitoring algorithms for appliance-level anomaly detection'. Together they form a unique fingerprint.

Cite this