Projects per year
Abstract
Appliance faults in buildings resulting in abnormal energy consumption is known as an anomaly. Traditionally, anomaly detection is performed either at aggregate, i.e., meter-level, or at appliance level. Meter-level anomaly detection does not identify the anomaly-causing appliance, while appliance-level detection requires submetering each appliance in the building. Non-Intrusive Load Monitoring (NILM) has been proposed as an alternative to submetering to detect when appliances are running as well as estimate the appliance energy consumption. So far, applications have revolved around meaningful energy feedback. In this paper, we assess whether NILM can indeed be used for anomaly detection, as an alternative to submetering. We propose a supervised anomaly detection approach, AEM, and evaluate the effectiveness of NILM for anomaly detection. The proposed approach first learns an appliance's normal operation and then monitors its energy consumption for anomaly detection. We resort to real data, aggregate and submetered data from the two-year long REFIT dataset. We explain why anomaly detection performs worse with NILM data as compared to submetered data, highlighting the need for new, anomaly-aware NILM approaches.
Original language | English |
---|---|
Number of pages | 5 |
Publication status | Published - 12 May 2019 |
Event | 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing - Brighton Conference Centre, Brighton, United Kingdom Duration: 12 May 2019 → 17 May 2019 https://2019.ieeeicassp.org/ |
Conference
Conference | 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing |
---|---|
Abbreviated title | ICASSP |
Country/Territory | United Kingdom |
City | Brighton |
Period | 12/05/19 → 17/05/19 |
Internet address |
Keywords
- NILM
- energy disaggregation
- anomaly detection
- smart metering
Fingerprint
Dive into the research topics of 'Evaluation of non-intrusive load monitoring algorithms for appliance-level anomaly detection'. Together they form a unique fingerprint.Projects
- 1 Finished
-
EPSRC Global Challenges Research Fund Institutional Sponsorship Award 2017 (GCRF) / R171051-102
Stankovic, V. (Principal Investigator) & Stankovic, L. (Co-investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/07/17 → 31/03/18
Project: Research - Internally Allocated
Datasets
-
Annotated load anomalies from the REFIT Dataset
Rashid, H. (Creator), Stankovic, V. (Contributor), Stankovic, L. (Editor) & Singh, P. (Supervisor), University of Strathclyde, 6 Feb 2019
DOI: 10.15129/9729a2a0-11ce-4cce-b0d0-144c483fcb33, https://2019.ieeeicassp.org/
Dataset