### Abstract

Language | English |
---|---|

Article number | 20 |

Number of pages | 19 |

Journal | The Electronic Journal of Linear Algebra |

Volume | 32 |

DOIs | |

Publication status | Published - 1 Aug 2017 |

### Fingerprint

### Keywords

- matrix algebras
- preconditioning
- nonnegative matrices
- Pagerank

### Cite this

*The Electronic Journal of Linear Algebra*,

*32*, [20]. https://doi.org/10.13001/1081-3810.3343

}

*The Electronic Journal of Linear Algebra*, vol. 32, 20. https://doi.org/10.13001/1081-3810.3343

**Euler-Richardson method preconditioned by weakly stochastic matrix algebras : a potential contribution to Pagerank computation.** / Cipolla, Stefano; Di Fiore, Carmine; Tudisco, Francesco.

Research output: Contribution to journal › Article

TY - JOUR

T1 - Euler-Richardson method preconditioned by weakly stochastic matrix algebras

T2 - The Electronic Journal of Linear Algebra

AU - Cipolla, Stefano

AU - Di Fiore, Carmine

AU - Tudisco, Francesco

PY - 2017/8/1

Y1 - 2017/8/1

N2 - Let S be a column stochastic matrix with at least one full row. Then S describes a Pagerank-like random walk since the computation of the Perron vector x of S can be tackled by solving a suitable M-matrix linear system Mx = y, where M = I − τ A, A is a column stochastic matrix and τ is a positive coefficient smaller than one. The Pagerank centrality index on graphs is a relevant example where these two formulations appear. Previous investigations have shown that the Euler- Richardson (ER) method can be considered in order to approach the Pagerank computation problem by means of preconditioning strategies. In this work, it is observed indeed that the classical power method can be embedded into the ER scheme, through a suitable simple preconditioner. Therefore, a new preconditioner is proposed based on fast Householder transformations and the concept of low complexity weakly stochastic algebras, which gives rise to an effective alternative to the power method for large-scale sparse problems. Detailed mathematical reasonings for this choice are given and the convergence properties discussed. Numerical tests performed on real-world datasets are presented, showing the advantages given by the use of the proposed Householder-Richardson method.

AB - Let S be a column stochastic matrix with at least one full row. Then S describes a Pagerank-like random walk since the computation of the Perron vector x of S can be tackled by solving a suitable M-matrix linear system Mx = y, where M = I − τ A, A is a column stochastic matrix and τ is a positive coefficient smaller than one. The Pagerank centrality index on graphs is a relevant example where these two formulations appear. Previous investigations have shown that the Euler- Richardson (ER) method can be considered in order to approach the Pagerank computation problem by means of preconditioning strategies. In this work, it is observed indeed that the classical power method can be embedded into the ER scheme, through a suitable simple preconditioner. Therefore, a new preconditioner is proposed based on fast Householder transformations and the concept of low complexity weakly stochastic algebras, which gives rise to an effective alternative to the power method for large-scale sparse problems. Detailed mathematical reasonings for this choice are given and the convergence properties discussed. Numerical tests performed on real-world datasets are presented, showing the advantages given by the use of the proposed Householder-Richardson method.

KW - matrix algebras

KW - preconditioning

KW - nonnegative matrices

KW - Pagerank

U2 - 10.13001/1081-3810.3343

DO - 10.13001/1081-3810.3343

M3 - Article

VL - 32

JO - The Electronic Journal of Linear Algebra

JF - The Electronic Journal of Linear Algebra

SN - 1081-3810

M1 - 20

ER -