### Abstract

An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets.

An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets.

An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets.

An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets.

An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets.

Original language | English |
---|---|

Pages (from-to) | 2098 - 2108 |

Number of pages | 11 |

Journal | Discrete Mathematics |

Volume | 159 |

Issue number | 17 |

Early online date | 4 Aug 2011 |

DOIs | |

Publication status | Published - 28 Oct 2011 |

### Fingerprint

### Keywords

- computer science
- enumeration
- generating functions
- multiple statistics
- minimal elements
- posets

### Cite this

*Discrete Mathematics*,

*159*(17), 2098 - 2108. https://doi.org/10.1016/j.dam.2011.07.010

}

*Discrete Mathematics*, vol. 159, no. 17, pp. 2098 - 2108. https://doi.org/10.1016/j.dam.2011.07.010

**Enumerating (2+2) -free posets by the number of minimal elements and other statistics.** / Kitaev, Sergey; Remmel, Jeffrey.

Research output: Contribution to journal › Article

TY - JOUR

T1 - Enumerating (2+2) -free posets by the number of minimal elements and other statistics

AU - Kitaev, Sergey

AU - Remmel, Jeffrey

PY - 2011/10/28

Y1 - 2011/10/28

N2 - An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets.

AB - An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets.

KW - computer science

KW - enumeration

KW - generating functions

KW - multiple statistics

KW - minimal elements

KW - posets

U2 - 10.1016/j.dam.2011.07.010

DO - 10.1016/j.dam.2011.07.010

M3 - Article

VL - 159

SP - 2098

EP - 2108

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 17

ER -