Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3',5,5'-tetracarboxylic acid), MFM-300(Ga2)

Cristina P. Krap, Ruth Newby, Amarajothi Dhakshinamoorthy, Hermenegildo García, Izabela Cebula, Timothy L. Easun, Mathew Savage, Jennifer E. Eyley, Shan Gao, Alexander J. Blake, William Lewis, Peter H. Beton, Mark R. Warren, David R. Allan, Mark D. Frogley, Chiu C. Tang, Gianfelice Cinque, Sihai Yang, Martin Schröder

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

Metal-organic frameworks (MOFs) are usually synthesized using a single type of metal ion, and MOFs containing mixtures of different metal ions are of great interest and represent a methodology to enhance and tune materials properties. We report the synthesis of [Ga2(OH)2(L)] (H4L = biphenyl-3,3',5,5'-tetracarboxylic acid), designated as MFM-300(Ga2), (MFM = Manchester Framework Material replacing NOTT designation), by solvothermal reaction of Ga(NO3)3 and H4L in a mixture of DMF, THF, and water containing HCl for 3 days. MFM-300(Ga2) crystallizes in the tetragonal space group I4122, a = b = 15.0174(7) Å and c = 11.9111(11) Å and is isostructural with the Al(III) analogue MFM-300(Al2) with pores decorated with -OH groups bridging Ga(III) centers. The isostructural Fe-doped material [Ga1.87Fe0.13(OH)2(L)], MFM-300(Ga1.87Fe0.13), can be prepared under similar conditions to MFM-300(Ga2) via reaction of a homogeneous mixture of Fe(NO3)3 and Ga(NO3)3 with biphenyl-3,3',5,5'-tetracarboxylic acid. An Fe(III)-based material [Fe3O1.5(OH)(HL)(L)0.5(H2O)3.5], MFM-310(Fe), was synthesized with Fe(NO3)3 and the same ligand via hydrothermal methods. [MFM-310(Fe)] crystallizes in the orthorhombic space group Pmn21 with a = 10.560(4) Å, b = 19.451(8) Å, and c = 11.773(5) Å and incorporates μ3-oxo-centered trinuclear iron cluster nodes connected by ligands to give a 3D nonporous framework that has a different structure to the MFM-300 series. Thus, Fe-doping can be used to monitor the effects of the heteroatom center within a parent Ga(III) framework without the requirement of synthesizing the isostructural Fe(III) analogue [Fe2(OH)2(L)], MFM-300(Fe2), which we have thus far been unable to prepare. Fe-doping of MFM-300(Ga2) affords positive effects on gas adsorption capacities, particularly for CO2 adsorption, whereby MFM-300(Ga1.87Fe0.13) shows a 49% enhancement of CO2 adsorption capacity in comparison to the homometallic parent material. We thus report herein the highest CO2 uptake (2.86 mmol g(-1) at 273 K at 1 bar) for a Ga-based MOF. The single-crystal X-ray structures of MFM-300(Ga2)-solv, MFM-300(Ga2), MFM-300(Ga2)·2.35CO2, MFM-300(Ga1.87Fe0.13)-solv, MFM-300(Ga1.87Fe0.13), and MFM-300(Ga1.87Fe0.13)·2.0CO2 have been determined. Most notably, in situ single-crystal diffraction studies of gas-loaded materials have revealed that Fe-doping has a significant impact on the molecular details for CO2 binding in the pore, with the bridging M-OH hydroxyl groups being preferred binding sites for CO2 within these framework materials. In situ synchrotron IR spectroscopic measurements on CO2 binding with respect to the -OH groups in the pore are consistent with the above structural analyses. In addition, we found that, compared to MFM-300(Ga2), Fe-doped MFM-300(Ga1.87Fe0.13) shows improved catalytic properties for the ring-opening reaction of styrene oxide, but similar activity for the room-temperature acetylation of benzaldehyde by methanol. The role of Fe-doping in these systems is discussed as a mechanism for enhancing porosity and the structural integrity of the parent material.

LanguageEnglish
Pages1076-1088
Number of pages13
JournalInorganic Chemistry
Volume55
Issue number3
Early online date12 Jan 2016
DOIs
Publication statusPublished - 1 Feb 2016

Fingerprint

magnetic force microscopy
Doping (additives)
Adsorption
acids
adsorption
Acids
augmentation
styrene oxide
Metals
Metal ions
Single crystals
Ligands
Acetylation
Gas adsorption
Structural integrity
diphenyl
Synchrotrons
Hydroxyl Radical
porosity
Methanol

Keywords

  • metal organic frameworks
  • metal ions
  • MOFs

Cite this

Krap, Cristina P. ; Newby, Ruth ; Dhakshinamoorthy, Amarajothi ; García, Hermenegildo ; Cebula, Izabela ; Easun, Timothy L. ; Savage, Mathew ; Eyley, Jennifer E. ; Gao, Shan ; Blake, Alexander J. ; Lewis, William ; Beton, Peter H. ; Warren, Mark R. ; Allan, David R. ; Frogley, Mark D. ; Tang, Chiu C. ; Cinque, Gianfelice ; Yang, Sihai ; Schröder, Martin. / Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3',5,5'-tetracarboxylic acid), MFM-300(Ga2). In: Inorganic Chemistry. 2016 ; Vol. 55, No. 3. pp. 1076-1088.
@article{564397d0972549329e799a7ff0431b71,
title = "Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3',5,5'-tetracarboxylic acid), MFM-300(Ga2)",
abstract = "Metal-organic frameworks (MOFs) are usually synthesized using a single type of metal ion, and MOFs containing mixtures of different metal ions are of great interest and represent a methodology to enhance and tune materials properties. We report the synthesis of [Ga2(OH)2(L)] (H4L = biphenyl-3,3',5,5'-tetracarboxylic acid), designated as MFM-300(Ga2), (MFM = Manchester Framework Material replacing NOTT designation), by solvothermal reaction of Ga(NO3)3 and H4L in a mixture of DMF, THF, and water containing HCl for 3 days. MFM-300(Ga2) crystallizes in the tetragonal space group I4122, a = b = 15.0174(7) {\AA} and c = 11.9111(11) {\AA} and is isostructural with the Al(III) analogue MFM-300(Al2) with pores decorated with -OH groups bridging Ga(III) centers. The isostructural Fe-doped material [Ga1.87Fe0.13(OH)2(L)], MFM-300(Ga1.87Fe0.13), can be prepared under similar conditions to MFM-300(Ga2) via reaction of a homogeneous mixture of Fe(NO3)3 and Ga(NO3)3 with biphenyl-3,3',5,5'-tetracarboxylic acid. An Fe(III)-based material [Fe3O1.5(OH)(HL)(L)0.5(H2O)3.5], MFM-310(Fe), was synthesized with Fe(NO3)3 and the same ligand via hydrothermal methods. [MFM-310(Fe)] crystallizes in the orthorhombic space group Pmn21 with a = 10.560(4) {\AA}, b = 19.451(8) {\AA}, and c = 11.773(5) {\AA} and incorporates μ3-oxo-centered trinuclear iron cluster nodes connected by ligands to give a 3D nonporous framework that has a different structure to the MFM-300 series. Thus, Fe-doping can be used to monitor the effects of the heteroatom center within a parent Ga(III) framework without the requirement of synthesizing the isostructural Fe(III) analogue [Fe2(OH)2(L)], MFM-300(Fe2), which we have thus far been unable to prepare. Fe-doping of MFM-300(Ga2) affords positive effects on gas adsorption capacities, particularly for CO2 adsorption, whereby MFM-300(Ga1.87Fe0.13) shows a 49{\%} enhancement of CO2 adsorption capacity in comparison to the homometallic parent material. We thus report herein the highest CO2 uptake (2.86 mmol g(-1) at 273 K at 1 bar) for a Ga-based MOF. The single-crystal X-ray structures of MFM-300(Ga2)-solv, MFM-300(Ga2), MFM-300(Ga2)·2.35CO2, MFM-300(Ga1.87Fe0.13)-solv, MFM-300(Ga1.87Fe0.13), and MFM-300(Ga1.87Fe0.13)·2.0CO2 have been determined. Most notably, in situ single-crystal diffraction studies of gas-loaded materials have revealed that Fe-doping has a significant impact on the molecular details for CO2 binding in the pore, with the bridging M-OH hydroxyl groups being preferred binding sites for CO2 within these framework materials. In situ synchrotron IR spectroscopic measurements on CO2 binding with respect to the -OH groups in the pore are consistent with the above structural analyses. In addition, we found that, compared to MFM-300(Ga2), Fe-doped MFM-300(Ga1.87Fe0.13) shows improved catalytic properties for the ring-opening reaction of styrene oxide, but similar activity for the room-temperature acetylation of benzaldehyde by methanol. The role of Fe-doping in these systems is discussed as a mechanism for enhancing porosity and the structural integrity of the parent material.",
keywords = "metal organic frameworks, metal ions, MOFs",
author = "Krap, {Cristina P.} and Ruth Newby and Amarajothi Dhakshinamoorthy and Hermenegildo Garc{\'i}a and Izabela Cebula and Easun, {Timothy L.} and Mathew Savage and Eyley, {Jennifer E.} and Shan Gao and Blake, {Alexander J.} and William Lewis and Beton, {Peter H.} and Warren, {Mark R.} and Allan, {David R.} and Frogley, {Mark D.} and Tang, {Chiu C.} and Gianfelice Cinque and Sihai Yang and Martin Schr{\"o}der",
year = "2016",
month = "2",
day = "1",
doi = "10.1021/acs.inorgchem.5b02108",
language = "English",
volume = "55",
pages = "1076--1088",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "3",

}

Krap, CP, Newby, R, Dhakshinamoorthy, A, García, H, Cebula, I, Easun, TL, Savage, M, Eyley, JE, Gao, S, Blake, AJ, Lewis, W, Beton, PH, Warren, MR, Allan, DR, Frogley, MD, Tang, CC, Cinque, G, Yang, S & Schröder, M 2016, 'Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3',5,5'-tetracarboxylic acid), MFM-300(Ga2)' Inorganic Chemistry, vol. 55, no. 3, pp. 1076-1088. https://doi.org/10.1021/acs.inorgchem.5b02108

Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3',5,5'-tetracarboxylic acid), MFM-300(Ga2). / Krap, Cristina P.; Newby, Ruth; Dhakshinamoorthy, Amarajothi; García, Hermenegildo; Cebula, Izabela; Easun, Timothy L.; Savage, Mathew; Eyley, Jennifer E.; Gao, Shan; Blake, Alexander J.; Lewis, William; Beton, Peter H.; Warren, Mark R.; Allan, David R.; Frogley, Mark D.; Tang, Chiu C.; Cinque, Gianfelice; Yang, Sihai; Schröder, Martin.

In: Inorganic Chemistry, Vol. 55, No. 3, 01.02.2016, p. 1076-1088.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3',5,5'-tetracarboxylic acid), MFM-300(Ga2)

AU - Krap, Cristina P.

AU - Newby, Ruth

AU - Dhakshinamoorthy, Amarajothi

AU - García, Hermenegildo

AU - Cebula, Izabela

AU - Easun, Timothy L.

AU - Savage, Mathew

AU - Eyley, Jennifer E.

AU - Gao, Shan

AU - Blake, Alexander J.

AU - Lewis, William

AU - Beton, Peter H.

AU - Warren, Mark R.

AU - Allan, David R.

AU - Frogley, Mark D.

AU - Tang, Chiu C.

AU - Cinque, Gianfelice

AU - Yang, Sihai

AU - Schröder, Martin

PY - 2016/2/1

Y1 - 2016/2/1

N2 - Metal-organic frameworks (MOFs) are usually synthesized using a single type of metal ion, and MOFs containing mixtures of different metal ions are of great interest and represent a methodology to enhance and tune materials properties. We report the synthesis of [Ga2(OH)2(L)] (H4L = biphenyl-3,3',5,5'-tetracarboxylic acid), designated as MFM-300(Ga2), (MFM = Manchester Framework Material replacing NOTT designation), by solvothermal reaction of Ga(NO3)3 and H4L in a mixture of DMF, THF, and water containing HCl for 3 days. MFM-300(Ga2) crystallizes in the tetragonal space group I4122, a = b = 15.0174(7) Å and c = 11.9111(11) Å and is isostructural with the Al(III) analogue MFM-300(Al2) with pores decorated with -OH groups bridging Ga(III) centers. The isostructural Fe-doped material [Ga1.87Fe0.13(OH)2(L)], MFM-300(Ga1.87Fe0.13), can be prepared under similar conditions to MFM-300(Ga2) via reaction of a homogeneous mixture of Fe(NO3)3 and Ga(NO3)3 with biphenyl-3,3',5,5'-tetracarboxylic acid. An Fe(III)-based material [Fe3O1.5(OH)(HL)(L)0.5(H2O)3.5], MFM-310(Fe), was synthesized with Fe(NO3)3 and the same ligand via hydrothermal methods. [MFM-310(Fe)] crystallizes in the orthorhombic space group Pmn21 with a = 10.560(4) Å, b = 19.451(8) Å, and c = 11.773(5) Å and incorporates μ3-oxo-centered trinuclear iron cluster nodes connected by ligands to give a 3D nonporous framework that has a different structure to the MFM-300 series. Thus, Fe-doping can be used to monitor the effects of the heteroatom center within a parent Ga(III) framework without the requirement of synthesizing the isostructural Fe(III) analogue [Fe2(OH)2(L)], MFM-300(Fe2), which we have thus far been unable to prepare. Fe-doping of MFM-300(Ga2) affords positive effects on gas adsorption capacities, particularly for CO2 adsorption, whereby MFM-300(Ga1.87Fe0.13) shows a 49% enhancement of CO2 adsorption capacity in comparison to the homometallic parent material. We thus report herein the highest CO2 uptake (2.86 mmol g(-1) at 273 K at 1 bar) for a Ga-based MOF. The single-crystal X-ray structures of MFM-300(Ga2)-solv, MFM-300(Ga2), MFM-300(Ga2)·2.35CO2, MFM-300(Ga1.87Fe0.13)-solv, MFM-300(Ga1.87Fe0.13), and MFM-300(Ga1.87Fe0.13)·2.0CO2 have been determined. Most notably, in situ single-crystal diffraction studies of gas-loaded materials have revealed that Fe-doping has a significant impact on the molecular details for CO2 binding in the pore, with the bridging M-OH hydroxyl groups being preferred binding sites for CO2 within these framework materials. In situ synchrotron IR spectroscopic measurements on CO2 binding with respect to the -OH groups in the pore are consistent with the above structural analyses. In addition, we found that, compared to MFM-300(Ga2), Fe-doped MFM-300(Ga1.87Fe0.13) shows improved catalytic properties for the ring-opening reaction of styrene oxide, but similar activity for the room-temperature acetylation of benzaldehyde by methanol. The role of Fe-doping in these systems is discussed as a mechanism for enhancing porosity and the structural integrity of the parent material.

AB - Metal-organic frameworks (MOFs) are usually synthesized using a single type of metal ion, and MOFs containing mixtures of different metal ions are of great interest and represent a methodology to enhance and tune materials properties. We report the synthesis of [Ga2(OH)2(L)] (H4L = biphenyl-3,3',5,5'-tetracarboxylic acid), designated as MFM-300(Ga2), (MFM = Manchester Framework Material replacing NOTT designation), by solvothermal reaction of Ga(NO3)3 and H4L in a mixture of DMF, THF, and water containing HCl for 3 days. MFM-300(Ga2) crystallizes in the tetragonal space group I4122, a = b = 15.0174(7) Å and c = 11.9111(11) Å and is isostructural with the Al(III) analogue MFM-300(Al2) with pores decorated with -OH groups bridging Ga(III) centers. The isostructural Fe-doped material [Ga1.87Fe0.13(OH)2(L)], MFM-300(Ga1.87Fe0.13), can be prepared under similar conditions to MFM-300(Ga2) via reaction of a homogeneous mixture of Fe(NO3)3 and Ga(NO3)3 with biphenyl-3,3',5,5'-tetracarboxylic acid. An Fe(III)-based material [Fe3O1.5(OH)(HL)(L)0.5(H2O)3.5], MFM-310(Fe), was synthesized with Fe(NO3)3 and the same ligand via hydrothermal methods. [MFM-310(Fe)] crystallizes in the orthorhombic space group Pmn21 with a = 10.560(4) Å, b = 19.451(8) Å, and c = 11.773(5) Å and incorporates μ3-oxo-centered trinuclear iron cluster nodes connected by ligands to give a 3D nonporous framework that has a different structure to the MFM-300 series. Thus, Fe-doping can be used to monitor the effects of the heteroatom center within a parent Ga(III) framework without the requirement of synthesizing the isostructural Fe(III) analogue [Fe2(OH)2(L)], MFM-300(Fe2), which we have thus far been unable to prepare. Fe-doping of MFM-300(Ga2) affords positive effects on gas adsorption capacities, particularly for CO2 adsorption, whereby MFM-300(Ga1.87Fe0.13) shows a 49% enhancement of CO2 adsorption capacity in comparison to the homometallic parent material. We thus report herein the highest CO2 uptake (2.86 mmol g(-1) at 273 K at 1 bar) for a Ga-based MOF. The single-crystal X-ray structures of MFM-300(Ga2)-solv, MFM-300(Ga2), MFM-300(Ga2)·2.35CO2, MFM-300(Ga1.87Fe0.13)-solv, MFM-300(Ga1.87Fe0.13), and MFM-300(Ga1.87Fe0.13)·2.0CO2 have been determined. Most notably, in situ single-crystal diffraction studies of gas-loaded materials have revealed that Fe-doping has a significant impact on the molecular details for CO2 binding in the pore, with the bridging M-OH hydroxyl groups being preferred binding sites for CO2 within these framework materials. In situ synchrotron IR spectroscopic measurements on CO2 binding with respect to the -OH groups in the pore are consistent with the above structural analyses. In addition, we found that, compared to MFM-300(Ga2), Fe-doped MFM-300(Ga1.87Fe0.13) shows improved catalytic properties for the ring-opening reaction of styrene oxide, but similar activity for the room-temperature acetylation of benzaldehyde by methanol. The role of Fe-doping in these systems is discussed as a mechanism for enhancing porosity and the structural integrity of the parent material.

KW - metal organic frameworks

KW - metal ions

KW - MOFs

UR - http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.5b02108

U2 - 10.1021/acs.inorgchem.5b02108

DO - 10.1021/acs.inorgchem.5b02108

M3 - Article

VL - 55

SP - 1076

EP - 1088

JO - Inorganic Chemistry

T2 - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 3

ER -