Projects per year
Abstract
Extracellular matrix (ECM)-derived matrices such as Matrigel are used to culture numerous cell types in vitro as they recapitulate ECM properties that support cell growth, organisation, migration and differentiation. These ECM-derived matrices contain various growth factors which make them highly bioactive. However, they suffer lot-to-lot variability, undefined composition and lack of controlled physical properties. There is a need to develop rationally designed biomaterials that can also recapitulate ECM roles. Here, we report the development of Fibronectin (FN)-based 3D hydrogels of controlled stiffness and degradability that incorporate full-length FN to enable solid-phase presentation of growth factors in a physiological manner. We demonstrate, in vitro and in vivo, the effect of incorporating vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) in these hydrogels to enhance angiogenesis and bone regeneration, respectively. These hydrogels represent a step-change in the design of well-defined, reproducible, synthetic microenvironments for 3D cell culture that incorporate growth factors to achieve functional effects.
Original language | English |
---|---|
Article number | 120104 |
Number of pages | 15 |
Journal | Biomaterials |
Volume | 252 |
Early online date | 7 May 2020 |
DOIs | |
Publication status | Published - 30 Sept 2020 |
Keywords
- hydrogels
- growth factors
- fibronectin
- poly(ethylene) glycol
- bone
- vascularization
Fingerprint
Dive into the research topics of 'Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Soft And Small: Acoustic Transducers Inspired By Nature - SASATIN (EU European Research Council (ERC) Consolidator Grant)
Windmill, J. (Principal Investigator)
European Commission - FP7 - European Research Council
1/02/14 → 31/01/19
Project: Research