Energy efficiency and environmental life cycle assessment of Jatropha for energy in Nigeria: a 'well-to-wheel' perspective

Tosin Onabanjo, Giuseppina Di Lorenzo

Research output: Chapter in Book/Report/Conference proceedingConference contribution book

4 Citations (Scopus)

Abstract

There is a large imbalance between demand and supply of energy in Nigeria, with inefficient power supply being the country's greatest economic bane. Aside energy crisis, fuel is a luxurious commodity and petroleum diesel is the predominant fuel for power generation, particularly in the industrial sector. As a result, the country suffers from forced power outages, and persistent black out while residents and industries are forced to depend on self-generated electricity. These have notably reduced industrialization and increased environmental pollution across the country. This paper proposes the use of Jatropha biodiesel as a substitute fuel to petroleum diesel. It examines the energy efficiency and environmental life cycle impact of the production and use of 1MJ of Jatropha biodiesel in a typical 126 MW (ISO rating) industrial gas turbine power plant with multi-fuel capability using life cycle assessment methodologies and principles. A net energy ratio of 2.37, 1.54, and 1.32 and fossil fuel savings of 58%, 36% and 27% were achievable under three farming system scenarios: a) base-case rain-fed, b) base-case irrigated and c) large scale farming system. Also, an environmental benefit with GHG savings of 19% was attainable under the three farming scenarios. The results demonstrate that the contribution of GHGs and effect on climate change is most significant with the end use of the fuel. It also highlights the importance of clear definition of the reference system which should be indicative of the local production system and comparative to the system under study. A favourable business and economic climate driven by demand is proposed for Independent Power Producer (IPP) to generate power for offgrid users instead of generating power for the national grid using a decentralized Jatropha biodiesel production system coupled to waste to energy technologies. This could significantly improve the energy situation; diversify the energy generation mix and fuel supply in Nigeria, especially for small-scale businesses and the rural population.

LanguageEnglish
Title of host publicationAdvances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials
Number of pages9
Volume1
ISBN (Electronic)9780791856840
DOIs
Publication statusPublished - 1 Jan 2015
EventASME 2015 9th International Conference on Energy Sustainability, ES 2015, collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum - San Diego, United States
Duration: 28 Jun 20152 Jul 2015

Conference

ConferenceASME 2015 9th International Conference on Energy Sustainability, ES 2015, collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
CountryUnited States
CitySan Diego
Period28/06/152/07/15

Fingerprint

Energy efficiency
Life cycle
Wheels
Biodiesel
Crude oil
Gas turbine power plants
Industry
Economics
Fossil fuels
Outages
Climate change
Power generation
Rain
Large scale systems
Pollution
Electricity

Keywords

  • energy efficiency
  • environmental Jatropha use
  • Jatropha production
  • life-cycle assessment
  • Nigeria

Cite this

Onabanjo, T., & Lorenzo, G. D. (2015). Energy efficiency and environmental life cycle assessment of Jatropha for energy in Nigeria: a 'well-to-wheel' perspective. In Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials (Vol. 1). [ES2015-49654] https://doi.org/10.1115/ES2015-49654
Onabanjo, Tosin ; Lorenzo, Giuseppina Di. / Energy efficiency and environmental life cycle assessment of Jatropha for energy in Nigeria : a 'well-to-wheel' perspective. Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials. Vol. 1 2015.
@inproceedings{dde546ff3b0b45a582d592cb4fcbb0ac,
title = "Energy efficiency and environmental life cycle assessment of Jatropha for energy in Nigeria: a 'well-to-wheel' perspective",
abstract = "There is a large imbalance between demand and supply of energy in Nigeria, with inefficient power supply being the country's greatest economic bane. Aside energy crisis, fuel is a luxurious commodity and petroleum diesel is the predominant fuel for power generation, particularly in the industrial sector. As a result, the country suffers from forced power outages, and persistent black out while residents and industries are forced to depend on self-generated electricity. These have notably reduced industrialization and increased environmental pollution across the country. This paper proposes the use of Jatropha biodiesel as a substitute fuel to petroleum diesel. It examines the energy efficiency and environmental life cycle impact of the production and use of 1MJ of Jatropha biodiesel in a typical 126 MW (ISO rating) industrial gas turbine power plant with multi-fuel capability using life cycle assessment methodologies and principles. A net energy ratio of 2.37, 1.54, and 1.32 and fossil fuel savings of 58{\%}, 36{\%} and 27{\%} were achievable under three farming system scenarios: a) base-case rain-fed, b) base-case irrigated and c) large scale farming system. Also, an environmental benefit with GHG savings of 19{\%} was attainable under the three farming scenarios. The results demonstrate that the contribution of GHGs and effect on climate change is most significant with the end use of the fuel. It also highlights the importance of clear definition of the reference system which should be indicative of the local production system and comparative to the system under study. A favourable business and economic climate driven by demand is proposed for Independent Power Producer (IPP) to generate power for offgrid users instead of generating power for the national grid using a decentralized Jatropha biodiesel production system coupled to waste to energy technologies. This could significantly improve the energy situation; diversify the energy generation mix and fuel supply in Nigeria, especially for small-scale businesses and the rural population.",
keywords = "energy efficiency, environmental Jatropha use, Jatropha production, life-cycle assessment, Nigeria",
author = "Tosin Onabanjo and Lorenzo, {Giuseppina Di}",
year = "2015",
month = "1",
day = "1",
doi = "10.1115/ES2015-49654",
language = "English",
volume = "1",
booktitle = "Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials",

}

Onabanjo, T & Lorenzo, GD 2015, Energy efficiency and environmental life cycle assessment of Jatropha for energy in Nigeria: a 'well-to-wheel' perspective. in Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials. vol. 1, ES2015-49654, ASME 2015 9th International Conference on Energy Sustainability, ES 2015, collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum, San Diego, United States, 28/06/15. https://doi.org/10.1115/ES2015-49654

Energy efficiency and environmental life cycle assessment of Jatropha for energy in Nigeria : a 'well-to-wheel' perspective. / Onabanjo, Tosin; Lorenzo, Giuseppina Di.

Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials. Vol. 1 2015. ES2015-49654.

Research output: Chapter in Book/Report/Conference proceedingConference contribution book

TY - GEN

T1 - Energy efficiency and environmental life cycle assessment of Jatropha for energy in Nigeria

T2 - a 'well-to-wheel' perspective

AU - Onabanjo, Tosin

AU - Lorenzo, Giuseppina Di

PY - 2015/1/1

Y1 - 2015/1/1

N2 - There is a large imbalance between demand and supply of energy in Nigeria, with inefficient power supply being the country's greatest economic bane. Aside energy crisis, fuel is a luxurious commodity and petroleum diesel is the predominant fuel for power generation, particularly in the industrial sector. As a result, the country suffers from forced power outages, and persistent black out while residents and industries are forced to depend on self-generated electricity. These have notably reduced industrialization and increased environmental pollution across the country. This paper proposes the use of Jatropha biodiesel as a substitute fuel to petroleum diesel. It examines the energy efficiency and environmental life cycle impact of the production and use of 1MJ of Jatropha biodiesel in a typical 126 MW (ISO rating) industrial gas turbine power plant with multi-fuel capability using life cycle assessment methodologies and principles. A net energy ratio of 2.37, 1.54, and 1.32 and fossil fuel savings of 58%, 36% and 27% were achievable under three farming system scenarios: a) base-case rain-fed, b) base-case irrigated and c) large scale farming system. Also, an environmental benefit with GHG savings of 19% was attainable under the three farming scenarios. The results demonstrate that the contribution of GHGs and effect on climate change is most significant with the end use of the fuel. It also highlights the importance of clear definition of the reference system which should be indicative of the local production system and comparative to the system under study. A favourable business and economic climate driven by demand is proposed for Independent Power Producer (IPP) to generate power for offgrid users instead of generating power for the national grid using a decentralized Jatropha biodiesel production system coupled to waste to energy technologies. This could significantly improve the energy situation; diversify the energy generation mix and fuel supply in Nigeria, especially for small-scale businesses and the rural population.

AB - There is a large imbalance between demand and supply of energy in Nigeria, with inefficient power supply being the country's greatest economic bane. Aside energy crisis, fuel is a luxurious commodity and petroleum diesel is the predominant fuel for power generation, particularly in the industrial sector. As a result, the country suffers from forced power outages, and persistent black out while residents and industries are forced to depend on self-generated electricity. These have notably reduced industrialization and increased environmental pollution across the country. This paper proposes the use of Jatropha biodiesel as a substitute fuel to petroleum diesel. It examines the energy efficiency and environmental life cycle impact of the production and use of 1MJ of Jatropha biodiesel in a typical 126 MW (ISO rating) industrial gas turbine power plant with multi-fuel capability using life cycle assessment methodologies and principles. A net energy ratio of 2.37, 1.54, and 1.32 and fossil fuel savings of 58%, 36% and 27% were achievable under three farming system scenarios: a) base-case rain-fed, b) base-case irrigated and c) large scale farming system. Also, an environmental benefit with GHG savings of 19% was attainable under the three farming scenarios. The results demonstrate that the contribution of GHGs and effect on climate change is most significant with the end use of the fuel. It also highlights the importance of clear definition of the reference system which should be indicative of the local production system and comparative to the system under study. A favourable business and economic climate driven by demand is proposed for Independent Power Producer (IPP) to generate power for offgrid users instead of generating power for the national grid using a decentralized Jatropha biodiesel production system coupled to waste to energy technologies. This could significantly improve the energy situation; diversify the energy generation mix and fuel supply in Nigeria, especially for small-scale businesses and the rural population.

KW - energy efficiency

KW - environmental Jatropha use

KW - Jatropha production

KW - life-cycle assessment

KW - Nigeria

UR - http://www.scopus.com/inward/record.url?scp=84949668866&partnerID=8YFLogxK

U2 - 10.1115/ES2015-49654

DO - 10.1115/ES2015-49654

M3 - Conference contribution book

VL - 1

BT - Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials

ER -

Onabanjo T, Lorenzo GD. Energy efficiency and environmental life cycle assessment of Jatropha for energy in Nigeria: a 'well-to-wheel' perspective. In Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials. Vol. 1. 2015. ES2015-49654 https://doi.org/10.1115/ES2015-49654