Encoding labelled p-Riordan graphs by words and pattern-avoiding permutations

Research output: Contribution to journalArticle


The notion of a p-Riordan graph generalizes that of a Riordan graph, which, in turn, generalizes the notions of a Pascal graph and a Toeplitz graph. In this paper we introduce the notion of a p-Riordan word, and show how to encode p-Riordan graphs by p-Riordan words. For special important cases of Riordan graphs (the case p=2) and oriented Riordan graphs (the case p=3) we provide alternative encodings in terms of pattern-avoiding permutations and certain balanced words, respectively. As a bi-product of our studies, we provide an alternative proof of a known enumerative result on closed walks in the cube.
Original languageEnglish
JournalGraphs and Combinatorics
Publication statusAccepted/In press - 1 Sep 2020


  • Riordan graph
  • p-Riordan graph
  • p-Riordan word
  • permutation pattern
  • balanced word

Cite this