### Abstract

The notion of quasi boundary triples and their Weyl functions is reviewed and applied to self-adjointness and spectral problems for a class of elliptic, formally symmetric, second order partial differential expressions with variable coefficients on bounded domains.

Original language | English |
---|---|

Title of host publication | Operator Methods for Boundary Value Problems |

Editors | Seppo Hassi, Hendrik S. V. de Snoo, Franciszek Hugon Szafraniec |

Publisher | Cambridge University Press |

Pages | 121-160 |

Number of pages | 40 |

ISBN (Print) | 9781107606111 |

Publication status | Published - Oct 2012 |

### Publication series

Name | London Mathematial Society Lecture Note Series |
---|---|

Publisher | Cambridge University Press |

### Keywords

- extension theory
- Dirichlet-to-Neumann maps
- symmetric operators
- quasi boundary triple

## Cite this

Behrndt, J., & Langer, M. (2012). Elliptic operators, Dirichlet-to-Neumann maps and quasi boundary triples. In S. Hassi, H. S. V. de Snoo, & F. H. Szafraniec (Eds.),

*Operator Methods for Boundary Value Problems*(pp. 121-160). (London Mathematial Society Lecture Note Series). Cambridge University Press.