Electron acceleration to energies beyond GeV by a relativistic ion beam instability

M.E. Dieckmann, B. Eliasson, P. K. Shukla

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)


Synchrotron emission suggests the presence of TeV electrons at various astrophysical objects. We propose a mechanism for the acceleration of electrons to ultrahigh energies (UHE) by intense electrostatic waves (ESWs). The latter are driven by dense proton beams that move at relativistic speeds relative to a background plasma and the electrons are accelerated by their nonlinear interaction with the ESWs. We follow the evolution of the wave instability by means of particle-in-cell (PIC) simulations. After the instability has saturated, we obtain spatially confined electron voids in which secondary instabilities develop due to resonant interactions between the beams and the background protons, generating intense ESWs which accelerate electrons to ultrarelativistic speeds within times of a few hundred inverse plasma frequencies.
Original languageEnglish
Article number036401
Number of pages5
JournalPhysical Review E
Issue number3
Publication statusPublished - 10 Sep 2004


  • electron acceleration
  • ion beam instability


Dive into the research topics of 'Electron acceleration to energies beyond GeV by a relativistic ion beam instability'. Together they form a unique fingerprint.

Cite this