Electrochemical detection of triacetone triperoxide

Lynn Dennany, Amy Stewart, Alasdair James Stewart

Research output: Contribution to conferencePoster

Abstract

Polyaniline (PAni) and other conducting polumers such as PMAS poly 2-methoxyaniline 5-sulfonic acid prepared in acidic media are some of the most widely studied conducting polymers due to their straightforward method of preparation and the stability of their conductive emeraldine salt (ES) form. Many applications have been examined, including their use in energy storage media, within electrochromic devices, within chemical sensors and as actuators. Their applications within sensor design has made them attractive commercial compounds especially within analytical chemistry. In addition, given their unique chemistry they can be tailored for the detection for a variety of different compounds and materials. These materials can attribute significant advantages over other more conventionl techniques, in particular, low background signals and the ability to control both tine and position of the reactions involved accurately.
These conducting polymers can successfully mediate the oxidation of hydrogen peroxide and triacetone triperoxide (TATP) thereby allowing for a simple and fast means of detection. The different redox states of these conducting polymers have distinct spectroscopic properties which may be exploited in the development of novel sensor platforms. To show the suitability of these materials for electrochemical detection of TATP, we investigated both the current and UV-Vis responses at different concentrations of TATP in aqueous media. The results showed a linear relationship for current and absorption with an increase in the concentration of TATP. These results highight the applicability of electrochemistry for forensic science.

Conference

Conference6th European Academy of Forensic Science Conference
CountryNetherlands
CityThe Hague
Period20/08/1224/08/12

Fingerprint

Conducting polymers
Electrochromic devices
Sensors
Electrochemistry
Chemical sensors
Energy storage
Hydrogen Peroxide
Actuators
Salts
Oxidation
triacetone triperoxide
Chemical analysis

Keywords

  • triacetone triperoxide
  • electrochemical detection

Cite this

Dennany, L., Stewart, A., & Stewart, A. J. (2012). Electrochemical detection of triacetone triperoxide. Poster session presented at 6th European Academy of Forensic Science Conference, The Hague, Netherlands.
Dennany, Lynn ; Stewart, Amy ; Stewart, Alasdair James. / Electrochemical detection of triacetone triperoxide. Poster session presented at 6th European Academy of Forensic Science Conference, The Hague, Netherlands.
@conference{2647047deac3439cb04bc3fba8f3174b,
title = "Electrochemical detection of triacetone triperoxide",
abstract = "Polyaniline (PAni) and other conducting polumers such as PMAS poly 2-methoxyaniline 5-sulfonic acid prepared in acidic media are some of the most widely studied conducting polymers due to their straightforward method of preparation and the stability of their conductive emeraldine salt (ES) form. Many applications have been examined, including their use in energy storage media, within electrochromic devices, within chemical sensors and as actuators. Their applications within sensor design has made them attractive commercial compounds especially within analytical chemistry. In addition, given their unique chemistry they can be tailored for the detection for a variety of different compounds and materials. These materials can attribute significant advantages over other more conventionl techniques, in particular, low background signals and the ability to control both tine and position of the reactions involved accurately.These conducting polymers can successfully mediate the oxidation of hydrogen peroxide and triacetone triperoxide (TATP) thereby allowing for a simple and fast means of detection. The different redox states of these conducting polymers have distinct spectroscopic properties which may be exploited in the development of novel sensor platforms. To show the suitability of these materials for electrochemical detection of TATP, we investigated both the current and UV-Vis responses at different concentrations of TATP in aqueous media. The results showed a linear relationship for current and absorption with an increase in the concentration of TATP. These results highight the applicability of electrochemistry for forensic science.",
keywords = "triacetone triperoxide, electrochemical detection",
author = "Lynn Dennany and Amy Stewart and Stewart, {Alasdair James}",
year = "2012",
month = "8",
day = "20",
language = "English",
note = "6th European Academy of Forensic Science Conference ; Conference date: 20-08-2012 Through 24-08-2012",

}

Dennany, L, Stewart, A & Stewart, AJ 2012, 'Electrochemical detection of triacetone triperoxide' 6th European Academy of Forensic Science Conference, The Hague, Netherlands, 20/08/12 - 24/08/12, .

Electrochemical detection of triacetone triperoxide. / Dennany, Lynn; Stewart, Amy; Stewart, Alasdair James.

2012. Poster session presented at 6th European Academy of Forensic Science Conference, The Hague, Netherlands.

Research output: Contribution to conferencePoster

TY - CONF

T1 - Electrochemical detection of triacetone triperoxide

AU - Dennany, Lynn

AU - Stewart, Amy

AU - Stewart, Alasdair James

PY - 2012/8/20

Y1 - 2012/8/20

N2 - Polyaniline (PAni) and other conducting polumers such as PMAS poly 2-methoxyaniline 5-sulfonic acid prepared in acidic media are some of the most widely studied conducting polymers due to their straightforward method of preparation and the stability of their conductive emeraldine salt (ES) form. Many applications have been examined, including their use in energy storage media, within electrochromic devices, within chemical sensors and as actuators. Their applications within sensor design has made them attractive commercial compounds especially within analytical chemistry. In addition, given their unique chemistry they can be tailored for the detection for a variety of different compounds and materials. These materials can attribute significant advantages over other more conventionl techniques, in particular, low background signals and the ability to control both tine and position of the reactions involved accurately.These conducting polymers can successfully mediate the oxidation of hydrogen peroxide and triacetone triperoxide (TATP) thereby allowing for a simple and fast means of detection. The different redox states of these conducting polymers have distinct spectroscopic properties which may be exploited in the development of novel sensor platforms. To show the suitability of these materials for electrochemical detection of TATP, we investigated both the current and UV-Vis responses at different concentrations of TATP in aqueous media. The results showed a linear relationship for current and absorption with an increase in the concentration of TATP. These results highight the applicability of electrochemistry for forensic science.

AB - Polyaniline (PAni) and other conducting polumers such as PMAS poly 2-methoxyaniline 5-sulfonic acid prepared in acidic media are some of the most widely studied conducting polymers due to their straightforward method of preparation and the stability of their conductive emeraldine salt (ES) form. Many applications have been examined, including their use in energy storage media, within electrochromic devices, within chemical sensors and as actuators. Their applications within sensor design has made them attractive commercial compounds especially within analytical chemistry. In addition, given their unique chemistry they can be tailored for the detection for a variety of different compounds and materials. These materials can attribute significant advantages over other more conventionl techniques, in particular, low background signals and the ability to control both tine and position of the reactions involved accurately.These conducting polymers can successfully mediate the oxidation of hydrogen peroxide and triacetone triperoxide (TATP) thereby allowing for a simple and fast means of detection. The different redox states of these conducting polymers have distinct spectroscopic properties which may be exploited in the development of novel sensor platforms. To show the suitability of these materials for electrochemical detection of TATP, we investigated both the current and UV-Vis responses at different concentrations of TATP in aqueous media. The results showed a linear relationship for current and absorption with an increase in the concentration of TATP. These results highight the applicability of electrochemistry for forensic science.

KW - triacetone triperoxide

KW - electrochemical detection

UR - http://www.eafs2012.eu/

M3 - Poster

ER -

Dennany L, Stewart A, Stewart AJ. Electrochemical detection of triacetone triperoxide. 2012. Poster session presented at 6th European Academy of Forensic Science Conference, The Hague, Netherlands.