Abstract
Adipocyte dysfunction is a crucial driver of insulin resistance and type 2 diabetes. We identified EH domain-containing protein 2 (EHD2) as one of the most highly upregulated genes at the early stage of adipose tissue expansion. EHD2 is a dynamin-related ATPase influencing several cellular processes, including membrane recycling, caveolae dynamics and lipid metabolism. Here, we investigated the role of EHD2 in adipocyte insulin signalling and glucose transport. Using C57BL6/N EHD2 knockout mice under short-term high-fat diet conditions and 3T3-L1 adipocytes we demonstrate that EHD2 deficiency is associated with deterioration of insulin signal transduction and impaired insulin-stimulated GLUT4 translocation. Furthermore, we show that lack of EHD2 is linked with altered plasma membrane lipid and protein composition, reduced insulin receptor expression, and diminished insulin-dependent SNARE protein complex formation. In conclusion, these data highlight the importance of EHD2 for the integrity of the plasma membrane milieu, insulin receptor stability, and downstream insulin receptor signalling events, involved in glucose uptake and ultimately underscore its role in insulin resistance and obesity.
Original language | English |
---|---|
Article number | ar124 |
Number of pages | 13 |
Journal | Molecular Biology of the Cell |
Volume | 34 |
Issue number | 12 |
Early online date | 13 Sept 2023 |
DOIs | |
Publication status | Published - 1 Nov 2023 |
Keywords
- EHD2
- caveolae
- insulin receptor
- GLUT4
- adipocytes
- plasma membrane