Effect of time history on normal behaviour modelling using SCADA data to predict wind turbine failures

Conor Mckinnon, Alan Turnbull, Sofia Koukoura, James Carroll, Alasdair McDonald

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)
99 Downloads (Pure)

Abstract

Operations and Maintenance (O&M) can make up a significant proportion of lifetime costs associated with any wind farm, with up to 30% reported for some offshore developments. It is increasingly important for wind farm owners and operators to optimise their assets in order to reduce the levelised cost of energy (LCoE). Reducing downtime through condition-based maintenance is a promising strategy of realising these goals. This is made possible through increased monitoring and gathering of operational data. SCADA data are useful in terms of wind turbine condition monitoring. This paper aims to perform a comprehensive comparison between two types of normal behaviour modelling: full signal reconstruction (FSRC) and autoregressive models with exogenous inputs (ARX). At the same time, the effects of the training time period on model performance are explored by considering models trained with both 12 and 6 months of data. Finally, the effects of time resolution are analysed for each algorithm by considering models trained and tested with both 10 and 60 min averaged data. Two different cases of wind turbine faults are examined. In both cases, the NARX model trained with 12 months of 10 min average Supervisory Control And Data Acquisition (SCADA) data had the best training performance.
Original languageEnglish
Article number4745
Number of pages19
JournalEnergies
Volume13
Issue number18
DOIs
Publication statusPublished - 11 Sept 2020

Keywords

  • SCADA
  • condition monitoring
  • normal behaviour modelling
  • neural networks

Fingerprint

Dive into the research topics of 'Effect of time history on normal behaviour modelling using SCADA data to predict wind turbine failures'. Together they form a unique fingerprint.

Cite this