Abstract
Tensile testing and cyclic tensile loading measurements were performed on heat-treated samples of annealed Ti-2448 and cold-rolled Ti-2448. Quenching from above the β-transus produces an alloy that is highly superelastic has ultra-low elastic modulus (10-25. GPa) and exhibits hysteresis on loading-unloading cycles. On repeated cycling the strain energy absorbed in each cycle decreases. Annealed Ti-2448 exhibits a stable hysteresis loop. Peaks from the α″ phase are observed in X-ray diffraction (XRD) patterns, thus the material is quite lean in β-stabilising additions. The alloy is shown to be highly unstable when heat-treated. A combination of small angle X-ray scattering (SAXS), transmission electron microscopy (TEM) and X-ray diffraction (XRD) was employed to relate the thermally induced microstructural evolution to the change in mechanical properties. A heat-treatment of 80. °C to the cold-rolled material precipitated the ω phase causing embrittlement. Increasing the ageing temperature from 80 to 300. °C increased the stiffness, made the elastic regime more linear, and further embrittled the alloy. The low temperature heat-treatments precipitate both ω and α″ phases. A higher temperature ageing treatment at 450. °C increased the yield strength to over 1. GPa and caused embrittlement, indicating co-precipitation of α and ω phases.
Original language | English |
---|---|
Pages (from-to) | 399-407 |
Number of pages | 9 |
Journal | Materials Science and Engineering A |
Volume | 655 |
Early online date | 22 Dec 2015 |
DOIs | |
Publication status | Published - 8 Feb 2016 |
Keywords
- aging
- electron microscopy
- mechanical characterisation
- phase transformation
- titanium alloys
- x-ray diffraction