Effect laws of different factors on levitation characteristics of high-Tc superconducting Maglev system with numerical solutions

Huan Huang, Jun Zheng, Hengpei Liao, Hong Ye, Haitao Li, Zigang Deng

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

The interaction between the high-temperature superconducting (HTS) bulk and permanent magnet guideway (PMG) has been a topic among the existing HTS magnetic levitation systems. Up to now, the theories about the electromagnetic and force characteristics have been relatively consummated. Here, using the finite element model by COMSOL Multiphysics 5.3a, we investigated the impact of the intrinsic and external factors on the levitation characteristics of HTS maglev systems, the application laws are concluded. Factors including the critical current density and geometric dimensions of the bulk superconductor, as well as the moving velocity, are discussed. The effects of the multiple back and forth movements are also analyzed. By comparing calculation results of the distributions of the induced current and the levitation force of the bulk superconductor, we can clearly confirm the effect laws of various factors on the electromagnetic characteristics and levitation force. These observations support the physical parameters that are difficult to be tested by experiments. And they also have a significant contribution to the experimental condition selections and optimization of the high-temperature superconducting magnetic levitation.
Original languageEnglish
Pages (from-to)2351-2358
Number of pages8
JournalJournal of Superconductivity and Novel Magnetism
Volume32
DOIs
Publication statusPublished - 5 Jan 2019

Keywords

  • high-temperature superconductor
  • Maglev system
  • electromagnetic analysis
  • levitation force
  • induced current density

Fingerprint

Dive into the research topics of 'Effect laws of different factors on levitation characteristics of high-Tc superconducting Maglev system with numerical solutions'. Together they form a unique fingerprint.

Cite this