Abstract
The pulsed electric field (PEF) processing of liquid and pumpable products has attracted significant interest from the pulsed power and bioscience research communities due to the nonthermal mechanisms of inactivation which results in preservation of the original characteristics of the product. Although the PEF process has been studied for several decades, the physical mechanisms of the interaction of pulsed electrical fields with microorganisms is still not understood fully. The present work is a study of the dynamics of the electrical field in the PEF treatment chamber with dielectric barriers and in the microorganism's membrane. It was found that the field in the membrane reaches a maximal value which could be two orders of magnitude higher than the original electrical field in the chamber and this value was attained in a time comparable to the Maxwell-Wagner relaxation time, τMW. Thus, the optimal duration of the field pulse during the PEF treatment should be equal to the time τMW
Original language | English |
---|---|
Pages | 611-614 |
Number of pages | 3 |
DOIs | |
Publication status | Published - May 2004 |
Event | 26th International Power Modulator Symposium, 2004 and 2004 High-Voltage Workshop - , United Kingdom Duration: 23 May 2004 → 26 May 2004 |
Conference
Conference | 26th International Power Modulator Symposium, 2004 and 2004 High-Voltage Workshop |
---|---|
Country | United Kingdom |
Period | 23/05/04 → 26/05/04 |
Keywords
- dynamics
- development
- electrical field
- cellular membranes
- PEF inactivation
- microorganisms