Dynamic properties of angular vertical comb-drive scanning micromirrors with electrothermally controlled variable offset

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

This paper presents the investigation of a variable angular vertical comb-drive (AVC) actuated MEMS scanning micromirror, focusing on the influence of the initial comb offset on the dynamic scan characteristics. Continuous control of the fixed comb initial vertical offset is achieved using an electrothermal actuator integrated in the AVC. Electro-thermo-mechanical simulations and experiments of the AVC structure show good agreement, with the initial vertical offset of the fixed comb reducing theoretically from 10.8 μm (0 mW to actuator) to 6.0 μm (500 mW to actuator) and experimentally from 10.4 μm (0 mW to actuator) to 4.9 μm (510 mW to actuator). Experimentally, a change of the initial vertical comb-offset from 10.4 μm to 4.9 μm leads to a reduction of the measured dynamic total optical scan angle (TOSA) from 27° to 19° for 100 V ac actuation. In addition, a mechanically assisted deflection of the AVC actuators to achieve an almost in-plane comb configuration further reduces the measured dynamic TOSA to about 3°. The overall device behavior is modeled using a hybrid simulation approach combining FEM analysis of the AVC capacitance with an analytical solution of the motion equation of the scanner. The analysis show good agreement, with the experimentally measured characteristics; overall showing an increased TOSA with higher initial comb offsets. 

LanguageEnglish
Pages999-1008
Number of pages10
JournalJournal of Microelectromechanical Systems
Volume23
Issue number4
Early online date20 Feb 2014
DOIs
Publication statusPublished - Aug 2014

Fingerprint

Actuators
Scanning
Equations of motion
MEMS
Capacitance
Finite element method
Experiments

Keywords

  • electrostatic force actuators
  • electrothermal microactuators
  • optical variables measurement
  • scanning micromirrors

Cite this

@article{d7b660251579404086fb42324b1a5658,
title = "Dynamic properties of angular vertical comb-drive scanning micromirrors with electrothermally controlled variable offset",
abstract = "This paper presents the investigation of a variable angular vertical comb-drive (AVC) actuated MEMS scanning micromirror, focusing on the influence of the initial comb offset on the dynamic scan characteristics. Continuous control of the fixed comb initial vertical offset is achieved using an electrothermal actuator integrated in the AVC. Electro-thermo-mechanical simulations and experiments of the AVC structure show good agreement, with the initial vertical offset of the fixed comb reducing theoretically from 10.8 μm (0 mW to actuator) to 6.0 μm (500 mW to actuator) and experimentally from 10.4 μm (0 mW to actuator) to 4.9 μm (510 mW to actuator). Experimentally, a change of the initial vertical comb-offset from 10.4 μm to 4.9 μm leads to a reduction of the measured dynamic total optical scan angle (TOSA) from 27° to 19° for 100 V ac actuation. In addition, a mechanically assisted deflection of the AVC actuators to achieve an almost in-plane comb configuration further reduces the measured dynamic TOSA to about 3°. The overall device behavior is modeled using a hybrid simulation approach combining FEM analysis of the AVC capacitance with an analytical solution of the motion equation of the scanner. The analysis show good agreement, with the experimentally measured characteristics; overall showing an increased TOSA with higher initial comb offsets. ",
keywords = "electrostatic force actuators, electrothermal microactuators, optical variables measurement, scanning micromirrors",
author = "Ralf Bauer and Li Li and Deepak Uttamchandani",
note = ". {\circledC} 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.",
year = "2014",
month = "8",
doi = "10.1109/JMEMS.2014.2304301",
language = "English",
volume = "23",
pages = "999--1008",
journal = "Journal of Microelectromechanical Systems",
issn = "1057-7157",
number = "4",

}

TY - JOUR

T1 - Dynamic properties of angular vertical comb-drive scanning micromirrors with electrothermally controlled variable offset

AU - Bauer, Ralf

AU - Li, Li

AU - Uttamchandani, Deepak

N1 - . © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

PY - 2014/8

Y1 - 2014/8

N2 - This paper presents the investigation of a variable angular vertical comb-drive (AVC) actuated MEMS scanning micromirror, focusing on the influence of the initial comb offset on the dynamic scan characteristics. Continuous control of the fixed comb initial vertical offset is achieved using an electrothermal actuator integrated in the AVC. Electro-thermo-mechanical simulations and experiments of the AVC structure show good agreement, with the initial vertical offset of the fixed comb reducing theoretically from 10.8 μm (0 mW to actuator) to 6.0 μm (500 mW to actuator) and experimentally from 10.4 μm (0 mW to actuator) to 4.9 μm (510 mW to actuator). Experimentally, a change of the initial vertical comb-offset from 10.4 μm to 4.9 μm leads to a reduction of the measured dynamic total optical scan angle (TOSA) from 27° to 19° for 100 V ac actuation. In addition, a mechanically assisted deflection of the AVC actuators to achieve an almost in-plane comb configuration further reduces the measured dynamic TOSA to about 3°. The overall device behavior is modeled using a hybrid simulation approach combining FEM analysis of the AVC capacitance with an analytical solution of the motion equation of the scanner. The analysis show good agreement, with the experimentally measured characteristics; overall showing an increased TOSA with higher initial comb offsets. 

AB - This paper presents the investigation of a variable angular vertical comb-drive (AVC) actuated MEMS scanning micromirror, focusing on the influence of the initial comb offset on the dynamic scan characteristics. Continuous control of the fixed comb initial vertical offset is achieved using an electrothermal actuator integrated in the AVC. Electro-thermo-mechanical simulations and experiments of the AVC structure show good agreement, with the initial vertical offset of the fixed comb reducing theoretically from 10.8 μm (0 mW to actuator) to 6.0 μm (500 mW to actuator) and experimentally from 10.4 μm (0 mW to actuator) to 4.9 μm (510 mW to actuator). Experimentally, a change of the initial vertical comb-offset from 10.4 μm to 4.9 μm leads to a reduction of the measured dynamic total optical scan angle (TOSA) from 27° to 19° for 100 V ac actuation. In addition, a mechanically assisted deflection of the AVC actuators to achieve an almost in-plane comb configuration further reduces the measured dynamic TOSA to about 3°. The overall device behavior is modeled using a hybrid simulation approach combining FEM analysis of the AVC capacitance with an analytical solution of the motion equation of the scanner. The analysis show good agreement, with the experimentally measured characteristics; overall showing an increased TOSA with higher initial comb offsets. 

KW - electrostatic force actuators

KW - electrothermal microactuators

KW - optical variables measurement

KW - scanning micromirrors

UR - http://www.scopus.com/inward/record.url?scp=84905661150&partnerID=8YFLogxK

UR - http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=84

U2 - 10.1109/JMEMS.2014.2304301

DO - 10.1109/JMEMS.2014.2304301

M3 - Article

VL - 23

SP - 999

EP - 1008

JO - Journal of Microelectromechanical Systems

T2 - Journal of Microelectromechanical Systems

JF - Journal of Microelectromechanical Systems

SN - 1057-7157

IS - 4

ER -