Dual ion species plasma expansion from isotopically layered cryogenic targets

G. G. Scott, D. C. Carroll, S. Astbury, R. J. Clarke, C. Hernandez-Gomez, M. King, A. Alejo, I. Y. Arteaga, R. J. Dance, A. Higginson, S. Hook, G. Liao, H. Liu, S. R. Mirfayzi, D. R. Rusby, M. P. Selwood, C. Spindloe, M. K. Tolley, F. Wagner, E. Zemaityte & 6 others M. Borghesi, S. Kar, Y. Li, M. Roth, P. McKenna, D. Neely

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer thick layer of pure deuterium exists as a buffer species at the target-vacuum interface of a hydrogen plasma. Modelling shows that by controlling the deuterium layer thickness, a composite H +/D+ ion beam can be produced by TNSA, with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modelling shows that a (4.3±0.7) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9◦ . Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4±0.7) MeV per nucleon was measured in a cone of half angle 7-9◦ , whilst maintaining a significant TNSA proton component.
LanguageEnglish
Number of pages6
JournalPhysical Review Letters
Volume120
Issue number20
Early online date18 May 2018
DOIs
Publication statusE-pub ahead of print - 18 May 2018

Fingerprint

cryogenics
deuterons
expansion
deuterium
cones
ions
hydrogen plasma
proton energy
buffers
ion beams
vacuum
composite materials
protons
cells

Keywords

  • dual ion species
  • plasma expansion
  • target vacuum interface
  • TNSA

Cite this

Scott, G. G. ; Carroll, D. C. ; Astbury, S. ; Clarke, R. J. ; Hernandez-Gomez, C. ; King, M. ; Alejo, A. ; Arteaga, I. Y. ; Dance, R. J. ; Higginson, A. ; Hook, S. ; Liao, G. ; Liu, H. ; Mirfayzi, S. R. ; Rusby, D. R. ; Selwood, M. P. ; Spindloe, C. ; Tolley, M. K. ; Wagner, F. ; Zemaityte, E. ; Borghesi, M. ; Kar, S. ; Li, Y. ; Roth, M. ; McKenna, P. ; Neely, D. / Dual ion species plasma expansion from isotopically layered cryogenic targets. In: Physical Review Letters. 2018 ; Vol. 120, No. 20.
@article{53f55b9093ce437dab3beb3b174b83da,
title = "Dual ion species plasma expansion from isotopically layered cryogenic targets",
abstract = "A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer thick layer of pure deuterium exists as a buffer species at the target-vacuum interface of a hydrogen plasma. Modelling shows that by controlling the deuterium layer thickness, a composite H +/D+ ion beam can be produced by TNSA, with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modelling shows that a (4.3±0.7) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9◦ . Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4±0.7) MeV per nucleon was measured in a cone of half angle 7-9◦ , whilst maintaining a significant TNSA proton component.",
keywords = "dual ion species, plasma expansion, target vacuum interface, TNSA",
author = "Scott, {G. G.} and Carroll, {D. C.} and S. Astbury and Clarke, {R. J.} and C. Hernandez-Gomez and M. King and A. Alejo and Arteaga, {I. Y.} and Dance, {R. J.} and A. Higginson and S. Hook and G. Liao and H. Liu and Mirfayzi, {S. R.} and Rusby, {D. R.} and Selwood, {M. P.} and C. Spindloe and Tolley, {M. K.} and F. Wagner and E. Zemaityte and M. Borghesi and S. Kar and Y. Li and M. Roth and P. McKenna and D. Neely",
year = "2018",
month = "5",
day = "18",
doi = "10.1103/PhysRevLett.120.204801",
language = "English",
volume = "120",
journal = "Physical Review Letters",
issn = "0031-9007",
number = "20",

}

Scott, GG, Carroll, DC, Astbury, S, Clarke, RJ, Hernandez-Gomez, C, King, M, Alejo, A, Arteaga, IY, Dance, RJ, Higginson, A, Hook, S, Liao, G, Liu, H, Mirfayzi, SR, Rusby, DR, Selwood, MP, Spindloe, C, Tolley, MK, Wagner, F, Zemaityte, E, Borghesi, M, Kar, S, Li, Y, Roth, M, McKenna, P & Neely, D 2018, 'Dual ion species plasma expansion from isotopically layered cryogenic targets' Physical Review Letters, vol. 120, no. 20. https://doi.org/10.1103/PhysRevLett.120.204801

Dual ion species plasma expansion from isotopically layered cryogenic targets. / Scott, G. G.; Carroll, D. C.; Astbury, S.; Clarke, R. J.; Hernandez-Gomez, C.; King, M.; Alejo, A.; Arteaga, I. Y.; Dance, R. J.; Higginson, A.; Hook, S.; Liao, G.; Liu, H.; Mirfayzi, S. R.; Rusby, D. R.; Selwood, M. P.; Spindloe, C.; Tolley, M. K.; Wagner, F.; Zemaityte, E.; Borghesi, M.; Kar, S.; Li, Y.; Roth, M.; McKenna, P.; Neely, D.

In: Physical Review Letters, Vol. 120, No. 20, 18.05.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Dual ion species plasma expansion from isotopically layered cryogenic targets

AU - Scott, G. G.

AU - Carroll, D. C.

AU - Astbury, S.

AU - Clarke, R. J.

AU - Hernandez-Gomez, C.

AU - King, M.

AU - Alejo, A.

AU - Arteaga, I. Y.

AU - Dance, R. J.

AU - Higginson, A.

AU - Hook, S.

AU - Liao, G.

AU - Liu, H.

AU - Mirfayzi, S. R.

AU - Rusby, D. R.

AU - Selwood, M. P.

AU - Spindloe, C.

AU - Tolley, M. K.

AU - Wagner, F.

AU - Zemaityte, E.

AU - Borghesi, M.

AU - Kar, S.

AU - Li, Y.

AU - Roth, M.

AU - McKenna, P.

AU - Neely, D.

PY - 2018/5/18

Y1 - 2018/5/18

N2 - A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer thick layer of pure deuterium exists as a buffer species at the target-vacuum interface of a hydrogen plasma. Modelling shows that by controlling the deuterium layer thickness, a composite H +/D+ ion beam can be produced by TNSA, with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modelling shows that a (4.3±0.7) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9◦ . Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4±0.7) MeV per nucleon was measured in a cone of half angle 7-9◦ , whilst maintaining a significant TNSA proton component.

AB - A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer thick layer of pure deuterium exists as a buffer species at the target-vacuum interface of a hydrogen plasma. Modelling shows that by controlling the deuterium layer thickness, a composite H +/D+ ion beam can be produced by TNSA, with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modelling shows that a (4.3±0.7) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9◦ . Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4±0.7) MeV per nucleon was measured in a cone of half angle 7-9◦ , whilst maintaining a significant TNSA proton component.

KW - dual ion species

KW - plasma expansion

KW - target vacuum interface

KW - TNSA

UR - https://journals.aps.org/prl/

U2 - 10.1103/PhysRevLett.120.204801

DO - 10.1103/PhysRevLett.120.204801

M3 - Article

VL - 120

JO - Physical Review Letters

T2 - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 20

ER -