Drug repositioning: a machine-learning approach through data integration

Francesco Napolitano, Yan Zhao, Vânia M Moreira, Roberto Tagliaferri, Juha Kere, Mauro D'Amato, Dario Greco

Research output: Contribution to journalArticlepeer-review

168 Citations (Scopus)
16 Downloads (Pure)


Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses.

Original languageEnglish
Article number30
Number of pages9
JournalJournal of Cheminformatics
Issue number1
Publication statusPublished - 22 Jun 2013


  • drug repositioning
  • connectivity map
  • CMap
  • integrative genomics


Dive into the research topics of 'Drug repositioning: a machine-learning approach through data integration'. Together they form a unique fingerprint.

Cite this